
Developer Course

Customization

T220 Data Entry and Setup Forms
2022 R1

Revision: 4/7/2022

Contents | 2

Contents

Copyright...4

Introduction...5

How to Use This Course.. 6

Course Prerequisites...7

Initial Configuration... 8

Step 1: Preparing the Environment.. 8

Step 2: Preparing the Needed Acumatica ERP Instance for the Training Course... 8

Step 3: Creating the Database Tables...9

Company Story and Customization Description...10

Part 1: Data Entry Form (Repair Work Orders)...12

Lesson 1.1: Configuring a Complex Form Layout.. 12

Step 1.1.1: Creating the Form—Self-Guided Exercise... 15

Step 1.1.2: Configuring the Controls of the Summary Area... 19

Step 1.1.3: Configuring the Layout of the Summary Area of the Form..25

Step 1.1.4: Configuring Form View Mode for the Grid.. 28

Step 1.1.5: Adding the Substitute Form with a Shared Filter to the Project..31

Lesson Summary.. 32

Review Questions... 35

Additional Information: Configuration of Controls.. 35

Additional Information: Layout Configuration... 36

Lesson 1.2: Copying Field Values from One Record to Another.. 36

Step 1.2.1: Creating a Work Order from a Template (with RowUpdated)..36

Step 1.2.2: Updating Fields of the Same Record on Update of a Field (with FieldUpdated and
FieldDefaulting)—Self-Guided Exercise... 39

Lesson Summary.. 40

Review Question... 41

Lesson 1.3: Validating the Field Values.. 41

Step 1.3.1: Validating an Independent Field Value (with FieldVerifying)...41

Step 1.3.2: Validating Dependent Fields of Records (with RowUpdating)...45

Lesson Summary.. 47

Review Questions... 48

Part 2: Setup Form (Repair Work Order Preferences)... 50

Lesson 2.1: Configuring the Auto-Numbering of a Field Value... 50

Step 2.1.1: Creating the Form—Self-Guided Exercise... 51

Contents | 3

Step 2.1.2: Configuring the DAC for the Setup Form (with PXPrimaryGraph and PXCacheName)..... 53

Step 2.1.3: Configuring the Auto-Numbering of Records (with CS.AutoNumberAttribute).................54

Lesson Summary.. 58

Review Questions... 59

Additional Information: Custom Feature Switches.. 60

Appendix: Use of Event Handlers... 61

Appendix: Reference Implementation.. 62

Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course..................................... 63

Appendix: Publishing the Required Customization Project... 64

Copyright | 4

Copyright

© 2022 Acumatica, Inc.

ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent of
Acumatica, Inc.

3933 Lake Washington Blvd NE, # 350, Kirkland, WA 98033

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States Government is
subject to restrictions as set forth in the applicable License and Services Agreement and in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Soware clause at DFARS 252.227-7013 or subparagraphs (c)(1) and
(c)(2) of the Commercial Computer Soware-Restricted Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this document, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Acumatica, Inc. reserves the right to revise this document and make changes in its content at any time,
without obligation to notify any person or entity of such revisions or changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot, Inc.
Microso Exchange and Microso Exchange Server are registered trademarks of Microso Corporation. All other
product names and services herein are trademarks or service marks of their respective companies.

Soware Version: 2022 R1

Last Updated: 04/07/2022

Introduction | 5

Introduction

The T220 Data Entry and Setup Forms training course shows how to create data entry and setup forms by using
Acumatica Framework and customization tools of Acumatica ERP. The course describes in detail how to define the
complex layout of a data entry form and implement the business logic of the form (such as insertion of data from a
template and validation of a field value). The course also shows how to provide configuration parameters for a data
entry form by using a setup form.

This course is intended for application developers who are starting to learn how to customize Acumatica ERP.

The course is based on a set of examples that demonstrate the general approach to customizing Acumatica ERP. It
is designed to give you ideas about how to develop your own embedded applications through the customization
tools. As you go through the course, you will continue the development of the customization for the cell phone
repair shop, which was performed in the T200 Maintenance Forms and T210 Customized Forms and Master-Detail
Relationship training courses (which we recommend that you take before completing the current course).

Aer you complete all the lessons of the course, you will be familiar with the programming techniques for
the definition of the complex layout of Acumatica ERP forms, the implementation of particular business logic
scenarios, and the configuration of setup parameters of Acumatica ERP forms.

We recommend that you complete the examples in the order in which they are provided in the course,
because some examples use the results of previous ones.

How to Use This Course | 6

How to Use This Course

To complete this course, you will complete the lessons from each part of the course in the order in which they are
presented and then pass the assessment test. More specifically, you will do the following:

1. Complete Course Prerequisites, perform Initial Configuration, and carefully read Company Story and
Customization Description.

2. Complete the lessons in both parts of the training guide.

3. In Partner University, take T220 Certification Test: Data Entry and Setup Forms.

Aer you pass the certification test, you will receive the Partner University certificate of course completion.

What Is in a Part?

The first part of the course explains how to create a data entry form, configure its layout, and implement basic
business logic scenarios.

The second part of the course shows how to create a setup form and configure the automatic numbering of data
records on the data entry form.

Each part of the course consists of lessons you should complete.

What Is in a Lesson?

Each lesson is dedicated to a particular development scenario that you can implement by using Acumatica ERP
customization tools and Acumatica Framework. Each lesson consists of a brief description of the scenario and an
example of the implementation of this scenario.

The lesson may also include Additional Information topics, which are outside of the scope of this course but may be
useful to some readers.

Each lesson ends with a Lesson Summary topic, which summarizes the development techniques used during the
implementation of the scenario.

What Are the Documentation Resources?

The complete Acumatica ERP and Acumatica Framework documentation is available on https://help.acumatica.com/
and is included in the Acumatica ERP instance. While viewing any form used in the course, you can click the Open
Help button in the top pane of the Acumatica ERP screen to bring up a form-specific Help menu; you can use the
links on this menu to quickly access form-related information and activities and to open a reference topic with
detailed descriptions of the form elements.

Licensing Information

For the educational purposes of this course, you use Acumatica ERP under the trial license, which does not require
activation and provides all available features. For the production use of the Acumatica ERP functionality, an
administrator has to activate the license the organization has purchased. Each particular feature may be subject to
additional licensing; please consult the Acumatica ERP sales policy for details.

https://help.acumatica.com/

Course Prerequisites | 7

Course Prerequisites

To complete this course, you should be familiar with the basic concepts of Acumatica Framework and Acumatica
Customization Platform. We recommend that you complete the T200 Maintenance Forms and T210 Customized
Forms and Master-Detail Relationship training courses before you begin this course.

Required Knowledge and Background

To complete the course successfully, you should have the following required knowledge:

• Proficiency with C#, including but not limited to the following features of the language:
• Class structure
• OOP (inheritance, interfaces, and polymorphism)
• Usage and creation of attributes
• Generics
• Delegates, anonymous methods, and lambda expressions

• Knowledge of the following main concepts of ASP.NET and web development:
• Application states
• The debugging of ASP.NET applications by using Visual Studio
• The process of attaching to IIS by using Visual Studio debugging tools
• Client- and server-side development
• The structure of web forms

• Experience with SQL Server, including doing the following:
• Writing and debugging complex SQL queries (WHERE clauses, aggregates, and subqueries)
• Understanding the database structure (primary keys, data types, and denormalization)

• The following experience with IIS:
• The configuration and deployment of ASP.NET websites
• The configuration and securing of IIS

Initial Configuration | 8

Initial Configuration

You need to perform the prerequisite actions described in this part before you start to complete the course.

If you have deployed an instance for the T210 Customized Forms and Master-Detail Relationship course and have the
customization project and the source code for this course, you can perform only Step 3.

Step 1: Preparing the Environment

If you have completed the T210 Customized Forms and Master-Detail Relationship training course and
are using the same environment for the current course, you can skip this step.

You should prepare the environment for the training course as follows:

1. Make sure the environment that you are going to use for the training course conforms to the System
Requirements for Acumatica ERP 2022 R1.

2. Make sure that the Web Server (IIS) features that are listed in Configuring Web Server (IIS) Features are
turned on.

3. Install the Acuminator extension for Visual Studio.

4. Clone or download the customization project and the source code of the extension library from the Help-
and-Training-Examples repository in Acumatica GitHub to a folder on your computer.

5. Install Acumatica ERP. On the Main Soware Configuration page of the installation program, select the
Install Acumatica ERP and Install Debugger Tools check boxes.

If you have already installed Acumatica ERP without debugger tools, you should remove
Acumatica ERP and install it again with the Install Debugger Tools check box selected. The
reinstallation of Acumatica ERP does not affect existing Acumatica ERP instances. For details,
see To Install the Acumatica ERP Tools.

Step 2: Preparing the Needed Acumatica ERP Instance for the Training Course

If you have completed the T210 Customized Forms and Master-Detail Relationship training course,
instead of deploying a new instance, you can use the Acumatica ERP instance that you deployed and
used for the training course.

You deploy an Acumatica ERP instance and configure it as follows:

1. Open the Acumatica ERP Configuration Wizard, and do the following:

a. Click Deploy New Application Instance for T-series Developer Courses.

b. On the Database Configuration page, make sure the name of the database is PhoneRepairShop.

c. On the Instance Configuration page, do the following:

a. In the Local Path of the Instance box, select a folder that is outside of the C:\Program Files
(x86) and C:\Program Files folders. (We recommend that you store the website folder
outside of these folders to avoid an issue with permission to work in these folders when you perform
customization of the website.)

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d5d39d-513a-4f93-b484-a95eb33103a1
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d5d39d-513a-4f93-b484-a95eb33103a1
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8ed6a834-e49d-4e9a-9f44-2ce4df048983
https://github.com/Acumatica/Help-and-Training-Examples
https://github.com/Acumatica/Help-and-Training-Examples
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b8a047e-4a7c-435f-b30c-265509560a70

Initial Configuration | 9

b. In the Training Course box, select the training course you are taking.

The system creates a new Acumatica ERP instance, adds a new tenant, loads the data to it, and publishes
the customization project that is needed for this training course.

2. Make sure a Visual Studio solution is available in the App_Data\Projects\PhoneRepairShop folder
of the Acumatica ERP instance folder. This is the solution of the extension library that you will modify in this
course.

3. Sign in to the new tenant by using the following credentials:

• Username: admin
• Password: setup
Change the password when the system prompts you to do so.

4. In the top right corner of the Acumatica ERP screen, click the username, and then click My Profile. On the
General Info tab of the User Profile (SM203010) form, which the system has opened, select YOGIFON in the
Default Branch box; then click Save on the form toolbar.

In subsequent sign-ins to this account, you will be signed in to this branch.

5. Optional: Add the Customization Projects (SM204505) and Generic Inquiry (SM208000) forms to your favorites.
For details about how to add a form to your favorites, see Managing Favorites: General Information.

If for some reason you cannot complete instructions in this step, you can create an Acumatica ERP
instance as described in Appendix: Deploying the Needed Acumatica ERP Instance for the Training
Course and manually publish the needed customization project as described in Appendix: Publishing
the Required Customization Project.

Step 3: Creating the Database Tables

Create the database tables that are necessary for the T220 Data Entry and Setup Forms training course and include
the scripts in the customization project as follows:

1. In SQL Server Management Studio, execute the T220_DatabaseTables.sql script to create the
database tables that are necessary for the T220 Data Entry and Setup Forms training course.

The script creates the following tables, which are new for this course: RSSVWorkOrder,
RSSVWorkOrderItem, RSSVWorkOrderLabor, and RSSVSetup.

2. On the Database Scripts page of the Customization Project Editor, for each added table, do the following:

a. On the page toolbar, click Add Custom Table Schema.

b. In the dialog box that opens, select the table and click OK.

3. Publish the project.

The design of database tables is outside of the scope of this course. For details on designing database
tables for Acumatica ERP, see Designing the Database Structure and DACs.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ec5534a-8fe8-4b8d-83d2-721d9c2d5864
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5659adfe-3e4a-45a6-a94a-a33c2f955194

Company Story and Customization Description | 10

Company Story and Customization Description

In this course, you will continue the development to support the cell phone repair shop of the Smart Fix company;
you began this development while completing the T200 Maintenance Forms and T210 Customized Forms and Master-
Detail Relationship training courses.

If you have not completed these training courses, you have loaded and published the customization
project with the results of these courses.

In the T200 Maintenance Forms training course, you have created two simple maintenance forms, Repair
Services (RS201000) and Serviced Devices (RS202000), which the Smart Fix company uses to manage the lists of,
respectively, repair services that the company provides and devices that can be serviced.

In the T210 Customized Forms and Master-Detail Relationship course, you have created another maintenance form,
Services and Prices (RS203000), and customized the Stock Items (IN202500) form of Acumatica ERP. The Services
and Prices form provides users with the ability to define and maintain the price for each provided repair service.
The Stock Items form has been customized to mark particular stock items as repair items—that is, items that are
used for the repair services.

In this course, you will create the Repair Work Orders (RS301000) data entry form, which is used to create and
manage work orders for repairs. You will also create the Repair Work Order Preferences (RS101000) setup form,
which an administrative user will use to specify the company's preferences for the repair work orders.

Repair Work Orders Form

The following screenshot shows how the Repair Work Orders (RS301000) form will look.

Figure: Repair Work Orders form

The form will contain the following tabs:
• Repair Items: Will show the list of repair items (stock items) necessary to complete the repair work order.
• Labor: Will contain the list of labor items (non-stock items) that are performed for the selected repair work

order.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

Company Story and Customization Description | 11

You will also import a substitute form of the inquiry type with a preconfigured filter of records; this substitute form
will serve as an entry point to the Repair Work Orders form.

This form will use the following custom tables, which you have added to the application database in the course
prerequisites:

• RSSVWorkOrder: The data of this table will be displayed in the Summary area of the form.
• RSSVWorkOrderItem: The data of this table will be displayed on the Repair Items tab.
• RSSVWorkOrderLabor: The data of this table will be displayed on the Labor tab.

Repair Work Order Preferences Form

The following screenshot shows how the Repair Work Order Preferences (RS101000) form will look when you have
developed it.

Figure: Repair Work Order Preferences form

The form will contain the following elements:

• The Numbering Sequence box will hold the numbering sequence that is used to auto-number repair work
orders.

• The Walk-In Customer box will contain the identifier of the customer record that should be used as the
customer for walk-in orders.

• The Default Employee box will specify the default assignee for repair work orders.
• The Prepayment Percent box will contain the percent of prepayment that a customer should pay for a

service that requires prepayment—that is, a service that has the Requires Prepayment check box selected
on the Repair Services (RS201000) form.

This form will use the RSSVSetup custom table, which you have added to the application database in the course
prerequisites.

Part 1: Data Entry Form (Repair Work Orders) | 12

Part 1: Data Entry Form (Repair Work Orders)

The Smart Fix company needs to have a custom Acumatica ERP form, on which users will create repair work orders.
For this purpose, in this part of the course, you will create the Repair Work Orders (RS301000) custom data entry
form, which is described in Company Story and Customization Description.

Data entry forms are the most frequently used forms of Acumatica ERP. Typically, these forms are used for the
input of business documents, such as sales orders and cases.

These forms have IDs that start with a two-letter abbreviation (indicating the functional area of the form) followed
by 30, such as RS301000. The names of the graphs that work with data entry forms have the Entry suffix. For
instance, RSSVWorkOrderEntry will be the name of the graph for the Repair Work Orders form. For details
about the naming conventions for the ASPX pages and graphs, see Form and Report Numbering and Graph Naming.

Aer you complete the lessons of this part, you will be able to test the functionality of the form.

Lesson 1.1: Configuring a Complex Form Layout

In this lesson, you will learn how to adjust the layout of controls on a form and how to configure a grid. As an
example, you will use the Repair Work Orders (RS301000) custom data entry form, which you will create in this
lesson.

You will also import a generic inquiry that presents the data entered on the Repair Work Orders form (the entry form
in this context) in a tabular format; a shared filter has been developed for the substitute form to filter the data. The
generic inquiry will function as a substitute form because it will be brought up instead of the entry form when a user
clicks the form name in a workspace. You will include both the generic inquiry and the filter in the customization
project along with the entry form.

Description of the Form Elements

The Summary area of the Repair Work Orders (RS301000) data entry form will contain the following elements:

• Order Nbr.: A box in which a user can add a new repair work order number or select an existing repair work
order number to view the repair work order identified by the number. The repair work order number is a six-
character string that can contain only digits.

• Status: A read-only box that displays the status of the repair work order, which is one of the following:
• On Hold
• Pending Payment
• Ready for Assignment
• Assigned
• Completed
• Paid

• Date Created: A box that is used to specify the date of creation of the repair work order. The system will
insert the current business date by default.

• Date Completed: A read-only box that is filled in by the system when the repair work order is assigned the
Completed status. The business logic that fills in the value of this box will be implemented in a later training
course.

• Priority: A box in which the user can select the priority of the repair.
• Customer ID: A box in which the user can select the ID of the customer who requested the repair.
• Service: A box in which the user can select one of the services configured on the custom Repair Services

(RS201000) form.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4a5e6db8-cbba-4cbe-b0f1-1d774381c1b4
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=100693b9-cf45-47aa-a653-24e03f7a93e8

Part 1: Data Entry Form (Repair Work Orders) | 13

• Device: A box in which the user can select one of the devices configured on the custom Serviced Devices
(RS203000) form.

• Assignee: A box in which the user can select an employee who performs the repair.
• Description: A box in which the user can type the description of the repair work order.
• Order Total: A read-only box that displays the price of the repair.
• Invoice Nbr.: A read-only box that displays the number of the invoice created for the repair work order. The

business logic that fills in the value of this box will be implemented in the T230 Actions training course.

The Repair Items tab will contain the same columns as the Repair Items tab of the Services and Prices (RS203000)
form except for the Required and Default columns. This tab supports form view mode, in which users can edit a
particular record selected in the grid in the form layout.

The Labor tab will contain the same columns as the Labor tab of the Services and Prices form.

Layout of the Form

In the Summary area of the form, you will adjust the layout as follows:

• Arrange the input controls in three columns on the form
• Adjust the widths of controls and labels
• Expand the Description box to span two columns

Also, you will make the following adjustments to the Repair Items tab, which contains the grid:

• Enable form view mode, and configure the input controls
• Arrange the input controls into two labeled groups, each in a separate column

The resulting layout of the Repair Work Orders form is shown in the screenshot below.

Figure: The Repair Work Orders form

Database Tables Used for the Form

Below is the class diagram, which shows the relationships between the RSSVWorkOrder,
RSSVWorkOrderItem, and RSSVWorkOrderLabor data access classes that are used for this form. The
RSSVWorkOrderItem.OrderNbr and RSSVWorkOrderLabor.OrderNbr fields are the references to
the data record of the master RSSVWorkOrder class, while the RSSVWorkOrderItem.InventoryID and

Part 1: Data Entry Form (Repair Work Orders) | 14

RSSVWorkOrderLabor.InventoryID fields are the references to the non-stock item added to the repair work
order.

The structure of the key fields of the RSSVWorkOrderItem and RSSVWorkOrderLabor DACs is copied
from the structure of the key fields of the RSSVRepairItem and RSSVLabor DACs, respectively. The
data of RSSVRepairItem and RSSVLabor will be used to fill values of RSSVWorkOrderItem and
RSSVWorkOrderLabor in Step 1.2.1: Creating a Work Order from a Template (with RowUpdated). The
RSSVWorkOrderItem DAC has the additional LineNbr key field because users can add multiple repair items
with the same service ID, device ID, and inventory ID to the Repair Items tab of the Repair Work Orders (RS301000)
form.

For a repair work order, the user specifies the repair service and device, which are represented as the references to
the corresponding classes as follows:

• RSSVWorkOrder.ServiceID is a reference to the RSSVRepairService class.
• RSSVWorkOrder.DeviceID is a reference to the RSSVDevice class.

Lesson Objectives

In this lesson, you will learn how to do the following:

• Align controls on a form
• Adjust the size of controls and labels
• Adjust a control to span several columns
• Configure the form view of a grid
• Add a substitute form with a shared filter to the customization project

Part 1: Data Entry Form (Repair Work Orders) | 15

Step 1.1.1: Creating the Form—Self-Guided Exercise

In this step, you will create the Repair Work Orders (RS301000) form on your own. Although this is a self-guided
exercise, you can use the details and suggestions in this topic as you create the form. The creation of a form is
described in detail in the T200 Maintenance Forms training course.

If you are using the Customization Project Editor to complete the self-guided exercise, you can follow this
instruction:

1. Create the form and graph as follows:

a. On the toolbar of the Customized Screens page of the Customization Project Editor, click Create New
Screen.

b. In the Create New Screen dialog box, which opens, specify the following values:

• Screen ID: RS.30.10.00
• Graph Name: RSSVWorkOrderEntry
• Graph Namespace: PhoneRepairShop
• Page Title: Repair Work Orders
• Template: FormTab

c. Move the generated RSSVWorkOrderEntry graph to the extension library.

2. Create and configure the DACs as specified below:

a. In Code Editor, generate the RSSVWorkOrder, RSSVWorkOrderItem, and RSSVWorkOrderLabor
DACs and move them to the extension library.

b. Configure the DACs in Visual Studio as follows:

• RSSVWorkOrder: Specify the system attributes and other attributes as shown in the code fragments
below:
• For the DAC, define the following attribute.

 [PXCacheName("Repair Work Order")]

• Define attributes for the system fields. (For details about the definition of the attributes of the
system fields, see Step 1.4.2: Configure the Attributes of the New DAC in the T200 Maintenance
Forms training course or see Audit Fields, Concurrent Update Control (TStamp), and Attachment of
Additional Objects to Data Records (NoteID) in the documentation.)

• Define the attributes of the RepairItemLineCntr field, which is not displayed on the UI, as
follows. (You will configure the attributes of the fields that are displayed in the UI in Step 1.1.2:
Configuring the Controls of the Summary Area.)

 [PXDBInt()]
 [PXDefault(0)]
 public virtual int? RepairItemLineCntr { get; set; }
 public abstract class repairItemLineCntr :
 PX.Data.BQL.BqlInt.Field<repairItemLineCntr> { }

You need this field to define the numbering of repair items on the Repair Items tab of the Repair
Work Orders (RS301000) form by using the predefined PXLineNbr attribute. For details about
this approach, see Step 2.1.3: Numbering Detail Records (with PXLineNbr) in the T210 Customized
Forms and Master-Detail Relationship training course.

• RSSVWorkOrderItem: Specify the system attributes and other attributes as shown in the code
fragments below:
• For the DAC, define the following attribute.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=3adf5d92-c3d0-46cf-98b6-245a9d4de943
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=9dd06906-0b2f-498c-a333-cfd641bfbd9e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8d904e5f-2b8c-4d82-a8f5-bc863f8ffc8f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c5495c0-4705-4a38-8ea9-532b0ba1724a
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c5495c0-4705-4a38-8ea9-532b0ba1724a
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=7bc9347e-bef7-44e7-aa52-b5b109c8bd1a

Part 1: Data Entry Form (Repair Work Orders) | 16

 [PXCacheName("Repair Item Included in Repair Work Order")]

• Configure the same attributes that have been configured for the corresponding fields of the
RSSVRepairItem DAC except for the PXParent attribute, which you need to assign to the
OrderNbr field.

• Make OrderNbr and LineNbr to be the key fields.

You need to make the LineNbr a key field so that a user can add multiple items with
the same InventoryID. In this case, the LineNbr is an alternative field to the
InventoryID field.

The RSSVWorkOrderItem DAC fields excluding the system fields should look as shown in the
following code.

 [PXCacheName("Repair Item Included in Repair Work Order")]
 public class RSSVWorkOrderItem : IBqlTable
 {
 #region OrderNbr
 [PXDBString(15, IsKey = true, IsUnicode = true, InputMask = "")]
 [PXDBDefault(typeof(RSSVWorkOrder.orderNbr))]
 [PXParent(typeof(SelectFrom<RSSVWorkOrder>.
 Where<RSSVWorkOrder.orderNbr.
 IsEqual<RSSVWorkOrderItem.orderNbr.FromCurrent>>))]
 public virtual string OrderNbr { get; set; }
 public abstract class orderNbr : PX.Data.BQL.BqlString.Field<orderNbr>
 { }
 #endregion

 #region LineNbr
 [PXDBInt(IsKey = true)]
 [PXLineNbr(typeof(RSSVWorkOrder.repairItemLineCntr))]
 [PXUIField(DisplayName = "Line Nbr.", Visible = false)]
 public virtual int? LineNbr { get; set; }
 public abstract class lineNbr : PX.Data.BQL.BqlInt.Field<lineNbr> { }
 #endregion

 #region RepairItemType
 [PXDBString(2, IsFixed = true)]
 [PXStringList(
 new string[]
 {
 RepairItemTypeConstants.Battery,
 RepairItemTypeConstants.Screen,
 RepairItemTypeConstants.ScreenCover,
 RepairItemTypeConstants.BackCover,
 RepairItemTypeConstants.Motherboard
 },
 new string[]
 {
 Messages.Battery,
 Messages.Screen,
 Messages.ScreenCover,
 Messages.BackCover,
 Messages.Motherboard
 }
)]
 [PXUIField(DisplayName = "Repair Item Type")]

Part 1: Data Entry Form (Repair Work Orders) | 17

 public virtual string RepairItemType { get; set; }
 public abstract class repairItemType :
 PX.Data.BQL.BqlString.Field<repairItemType> { }
 #endregion

 #region InventoryID
 [Inventory]
 [PXRestrictor(typeof(
 Where<InventoryItemExt.usrRepairItem.IsEqual<True>.
 And<Brackets<
 RSSVWorkOrderItem.repairItemType.FromCurrent.IsNull.
 Or<InventoryItemExt.usrRepairItemType.

 IsEqual<RSSVWorkOrderItem.repairItemType.FromCurrent>>>>>),
 Messages.StockItemIncorrectRepairItemType,
 typeof(RSSVWorkOrderItem.repairItemType))]
 public virtual int? InventoryID { get; set; }
 public abstract class inventoryID :
 PX.Data.BQL.BqlInt.Field<inventoryID> { }
 #endregion

 #region BasePrice
 [PXDBDecimal()]
 [PXDefault(TypeCode.Decimal, "0.0")]
 [PXUIField(DisplayName = "Price")]
 [PXFormula(null, typeof(SumCalc<RSSVWorkOrder.orderTotal>))]
 public virtual Decimal? BasePrice { get; set; }
 public abstract class basePrice :
 PX.Data.BQL.BqlDecimal.Field<basePrice> { }
 #endregion

 // system fields
}

• RSSVWorkOrderLabor: Specify the system attributes and other attributes as shown in the code
fragments below:
• For the DAC, define the following attribute.

 [PXCacheName("Work Order Labor")]

• Configure the same attributes that have been configured for the corresponding fields of the
RSSVLabor DAC except for the PXParent attribute, which you need to assign to the OrderNbr
field.

• Make OrderNbr and InventoryID to be the key fields.

You need to make InventoryID a key field so that a user cannot specify multiple
items with the same InventoryID.

The RSSVWorkOrderLabor DAC fields excluding the system fields should look as shown in the
following code.

 [PXCacheName("Work Order Labor")]
 public class RSSVWorkOrderLabor : IBqlTable
 {
 #region OrderNbr
 [PXDBString(15, IsKey = true, IsUnicode = true, InputMask = "")]
 [PXDBDefault(typeof(RSSVWorkOrder.orderNbr))]

Part 1: Data Entry Form (Repair Work Orders) | 18

 [PXParent(typeof(SelectFrom<RSSVWorkOrder>.
 Where<RSSVWorkOrder.orderNbr.
 IsEqual<RSSVWorkOrderLabor.orderNbr.FromCurrent>>))]
 public virtual string OrderNbr { get; set; }
 public abstract class orderNbr : PX.Data.BQL.BqlString.Field<orderNbr>
 { }
 #endregion

 #region InventoryID
 [Inventory(IsKey = true)]
 [PXRestrictor(typeof(Where<InventoryItem.stkItem, Equal<False>>),
 Messages.ItemIsStock)]
 public virtual int? InventoryID { get; set; }
 public abstract class inventoryID :
 PX.Data.BQL.BqlInt.Field<inventoryID> { }
 #endregion

 #region DefaultPrice
 [PXDBDecimal()]
 [PXDefault(TypeCode.Decimal, "0.0")]
 [PXUIField(DisplayName = "Default Price")]
 public virtual Decimal? DefaultPrice { get; set; }
 public abstract class defaultPrice :
 PX.Data.BQL.BqlDecimal.Field<defaultPrice> { }
 #endregion

 #region Quantity
 [PXDBDecimal()]
 [PXDefault(TypeCode.Decimal, "0.0")]
 [PXUIField(DisplayName = "Quantity")]
 public virtual Decimal? Quantity { get; set; }
 public abstract class quantity : PX.Data.BQL.BqlDecimal.Field<quantity>
 { }
 #endregion

 #region ExtPrice
 [PXDBDecimal()]
 [PXDefault(TypeCode.Decimal, "0.0")]
 [PXUIField(DisplayName = "Ext. Price", Enabled = false)]
 [PXFormula(
 typeof(Mult<RSSVWorkOrderLabor.quantity,
 RSSVWorkOrderLabor.defaultPrice>),
 typeof(SumCalc<RSSVWorkOrder.orderTotal>))]
 public virtual Decimal? ExtPrice { get; set; }
 public abstract class extPrice : PX.Data.BQL.BqlDecimal.Field<extPrice>
 { }
 #endregion

 // system fields
}

3. Configure the RSSVWorkOrderEntry graph: Define data views in the generated graph and make the
full list of standard system actions available by specifying the second generic type parameter in the base
PXGraph class as the following code shows.

 public class RSSVWorkOrderEntry : PXGraph<RSSVWorkOrderEntry, RSSVWorkOrder>
 {

Part 1: Data Entry Form (Repair Work Orders) | 19

 #region Views

 //The primary view
 public SelectFrom<RSSVWorkOrder>.View WorkOrders;

 //The view for the Repair Items tab
 public SelectFrom<RSSVWorkOrderItem>.
 Where<RSSVWorkOrderItem.orderNbr.
 IsEqual<RSSVWorkOrder.orderNbr.FromCurrent>>.View
 RepairItems;

 //The view for the Labor tab
 public SelectFrom<RSSVWorkOrderLabor>.
 Where<RSSVWorkOrderLabor.orderNbr.
 IsEqual<RSSVWorkOrder.orderNbr.FromCurrent>>.View
 Labor;
 #endregion
 }

4. Build the project in Visual Studio and publish the customization project.

5. Configure the RS301000.aspx page as follows:

a. Use the following settings:

• PrimaryView of the datasource control: WorkOrders
• DataMember of the form control: WorkOrders
• DataMember of the first grid control: RepairItems
• DataMember of the second grid control: Labor
• SkinID (in the PXGrid controls in ASPX): Details
• Enabled in AutoSize (in the AutoSize control inside PXGrid in ASPX): True
• Width (in the PXGrid controls in ASPX): 100%

b. Configure the controls on the form as follows:

• Configure the controls for the Repair Items and Labor tabs in the same way as you did for the Repair
Items and Labor tabs of the Services and Prices (RS203000) form. For details on the controls, see Step
2.1.4: Creating Controls on the Form and Step 4.1.1: Adding the Labor Tab—Self-Guided Exercise in the
T210 Customized Forms and Master-Detail Relationship training course.

• Do not configure controls for the Summary area of the form. You will configure them in Step 1.1.2:
Configuring the Controls of the Summary Area of this lesson.

6. Publish the customization project.

7. Include a link to the form in the Profiles category of the Phone Repair Shop workspace.

8. Update the SiteMapNode item for the Repair Work Orders form in the customization project.

Step 1.1.2: Configuring the Controls of the Summary Area

In this step, you will configure the UI elements of the Summary area of the Repair Work Orders (RS301000) form,
which are detailed in Description of the Form Elements. To configure the UI elements, you will specify the attributes
of the fields of the RSSVWorkOrder DAC and use the corresponding control types in the RS301000.aspx page.
For details about control types, see Input Controls in the documentation.

You will configure the following controls for the elements of the form (The detail instruction is in the Configuring
Controls section later in this topic):

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=88438efa-ea8b-4895-a8c4-fbae66a76cd5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=88438efa-ea8b-4895-a8c4-fbae66a76cd5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=b03d1136-84f4-4db6-aeb9-f748cdb1ecf9
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=87817ddf-d7ad-4ece-b151-c88c434b7318

Part 1: Data Entry Form (Repair Work Orders) | 20

• Order Nbr. (a selector with an input mask):
• By using the InputMask property of the PXDBString attribute, you will require users to enter only

digits in the box. For more information about input masks, see To Configure an Input Mask and a Display
Mask for a Field in the documentation.

• You will specify that the input value cannot be null and cannot contain only spaces
by setting the PersistingCheck property of the PXDefault attribute to
PXPersistingCheck.NullOrBlank.

• In the PXSelector attribute, you will not specify any fields to be displayed as columns of the selector.
Instead, you will use the Visibility property of the PXUIField attribute of the OrderNbr,
Description, ServiceID, and DeviceID fields to include these fields in the selector of the
OrderNbr field.

• You will use the PXSelector control in ASPX.
• Customer ID (a selector for a segmented key value):

• By using the CustomerActive attribute, defined in the PX.Objects.AR namespace, you will
configure a selector control for the box. This attribute selects only the customer records that have the
Active or One-Time status.

You can find the attribute that can be used for a selector control that retrieves the data
from an Acumatica ERP database table by investigating the source code of a similar
selector. For example, if you want to find an attribute that can be used with the customer
selector in the Summary area of a document, you can investigate the attributes assigned
to the ARInvoice.CustomerID field, which is displayed as the Customer box on the
Invoices and Memos (AR301000) form.

• You will use the PXSegmentMask control in ASPX. You use the PXSegmentMask control instead of the
PXSelector control if you need to configure a selector control for a segmented key value.

• Assignee (a selector):
• By using the Owner attribute, defined in the PX.TM namespace, you will configure a selector control for

the box. This attribute shows the list of employees.

To find an attribute that can be used with the employee selector in the Summary area of
a document, you can investigate the attributes assigned to the CR.Contact.OwnerID
field, which is displayed as the Owner box on the Leads (CR301000) form.

• You will use the PXSelector control in ASPX.
• Date Created and Date Completed (date-and-time controls):

• By using the PXDBDateAndTime and its DisplayMask and InputMask properties, you will
configure the controls to display the date in the month/day pattern and require users to enter only the
date in the control.

• You will set the default value for Date Created as the current business date, which is stored in the
AccessInfo.BusinessDate system field.

• You will use the PXDateTimeEdit control in ASPX.
• Status and Priority (drop-down lists):

• By using the PXStringList attribute, you will configure drop-down lists for these boxes. You will use
localizable names for the list items.

• You will use the PXDropDown control in ASPX.
• Order Total (a box with a decimal number):

• You will set the default value of the field by using the PXDefault attribute.
• You will make this field read-only by setting the Enabled property of the PXUIField attribute to

false.
• You will use the PXNumberEdit control in ASPX.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d0758787-4c73-423b-8566-11c83f3acde8
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d0758787-4c73-423b-8566-11c83f3acde8
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5e6f3b27-b7af-412f-a40a-1d4f4be70cba
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=ce564fa0-baca-4d9b-97a8-ec69910de4c2

Part 1: Data Entry Form (Repair Work Orders) | 21

• Invoice Nbr. (a box with the invoice number):
• You will make this field read-only by setting the Enabled property of the PXUIField attribute to

false.
• You will use the PXTextEdit control in ASPX. You will change the control for this box in the T230 Actions

training course.

The RSSVWorkOrder database table also contains the Hold field. The Hold field is a legacy field which was
used in the previous version of the course before the workflow has been implemented for the form. However, we
recommended that you have this field in the database table in case you plan to use it alongside the workflow, for
example to trigger a transition from the On Hold status. Now you only need to set the default value of the field by
using the PXDefault attribute.

Configuring Controls

Do the following:

1. In the RSSVWorkOrder DAC, configure the attributes of the OrderNbr field and the fields included in the
selector, as shown in the following code:

• For the OrderNbr field

 #region OrderNbr
 [PXDBString(15, IsKey = true, IsUnicode = true, InputMask =
 ">CCCCCCCCCCCCCCC")]
 [PXDefault(PersistingCheck = PXPersistingCheck.NullOrBlank)]
 [PXUIField(DisplayName = "Order Nbr.", Visibility =
 PXUIVisibility.SelectorVisible)]
 [PXSelector(typeof(Search<RSSVWorkOrder.orderNbr>))]
 public virtual string OrderNbr { get; set; }
 public abstract class orderNbr : PX.Data.BQL.BqlString.Field<orderNbr> { }
 #endregion

• For the Description field

 #region Description
 [PXDBString(60, IsUnicode = true)]
 [PXUIField(DisplayName = "Description", Visibility =
 PXUIVisibility.SelectorVisible)]
 public virtual string Description { get; set; }
 public abstract class description :
 PX.Data.BQL.BqlString.Field<description> { }
 #endregion

• For the DeviceID field

 #region DeviceID
 [PXDBInt()]
 [PXDefault]
 [PXUIField(DisplayName = "Device", Visibility =
 PXUIVisibility.SelectorVisible)]
 [PXSelector(typeof(Search<RSSVDevice.deviceID>),
 typeof(RSSVDevice.deviceCD),
 typeof(RSSVDevice.description),
 SubstituteKey = typeof(RSSVDevice.deviceCD),
 DescriptionField = typeof(RSSVDevice.description))]
 public virtual int? DeviceID { get; set; }
 public abstract class deviceID : PX.Data.BQL.BqlInt.Field<deviceID> { }
 #endregion

Part 1: Data Entry Form (Repair Work Orders) | 22

• For the ServiceID field

 #region ServiceID
 [PXDBInt()]
 [PXDefault]
 [PXUIField(DisplayName = "Service", Visibility =
 PXUIVisibility.SelectorVisible)]
 [PXSelector(typeof(Search<RSSVRepairService.serviceID>),
 typeof(RSSVRepairService.serviceCD),
 typeof(RSSVRepairService.description),
 SubstituteKey = typeof(RSSVRepairService.serviceCD),
 DescriptionField = typeof(RSSVRepairService.description))]
 public virtual int? ServiceID { get; set; }
 public abstract class serviceID : PX.Data.BQL.BqlInt.Field<serviceID> { }
 #endregion

2. Configure the attributes of the CustomerID and Assignee fields as follows:

a. In the RSSVWorkOrder.cs file, add the using directives as follows.

using PX.Objects.AR;
using PX.TM;

b. For the CustomerID field, specify the attributes as follows.

 #region CustomerID
 [PXDefault]
 [CustomerActive(DisplayName = "Customer ID", DescriptionField =
 typeof(Customer.acctName))]
 public virtual int? CustomerID { get; set; }
 public abstract class customerID : PX.Data.BQL.BqlInt.Field<customerID> { }
 #endregion

c. For the Assignee field, specify the attributes as follows.

 #region Assignee
 [Owner(DisplayName = "Assignee")]
 public virtual int? Assignee { get; set; }
 public abstract class assignee : PX.Data.BQL.BqlInt.Field<assignee> { }
 #endregion

3. Configure the attributes of the DateCreated and DateCompleted fields, as shown in the following
code:

• For the DateCreated field

 #region DateCreated
 [PXDBDate()]
 [PXDefault(typeof(AccessInfo.businessDate))]
 [PXUIField(DisplayName = "Date Created")]
 public virtual DateTime? DateCreated { get; set; }
 public abstract class dateCreated :
 PX.Data.BQL.BqlDateTime.Field<dateCreated> { }
 #endregion

• For the DateCompleted field

 #region DateCompleted
 [PXDBDate()]
 [PXUIField(DisplayName = "Date Completed", Enabled = false)]

Part 1: Data Entry Form (Repair Work Orders) | 23

 public virtual DateTime? DateCompleted { get; set; }
 public abstract class dateCompleted :
 PX.Data.BQL.BqlDateTime.Field<dateCompleted> { }
 #endregion

4. Configure the attributes of the Status and Priority fields as follows:

a. In the Messages class, define the constants to be used in the Status box, as shown in the following
code.

//Work order statuses
public const string OnHold = "On Hold";
public const string PendingPayment = "Pending Payment";
public const string ReadyForAssignment = "Ready for Assignment";
public const string Assigned = "Assigned";
public const string Completed = "Completed";
public const string Paid = "Paid";

b. Make sure the constants are already defined for the Priority box, as shown in the following code.

//Complexity of repair and work order priorities
public const string High = "High";
public const string Medium = "Medium";
public const string Low = "Low";

c. In the Constants.cs file, define the constants for the Priority box, as shown in the following code.

//Constants for the priority of repair work orders
public static class WorkOrderPriorityConstants
{
 public const string High = "H";
 public const string Medium = "M";
 public const string Low = "L";
}

d. Define the constants for the Status box, as shown in the following code.

//Constants for the statuses of repair work orders
public static class WorkOrderStatusConstants
{
public const string OnHold = "OH";
public const string PendingPayment = "PP";
public const string ReadyForAssignment = "RA";
public const string Assigned = "AS";
public const string Completed = "CM";
public const string Paid = "PD";
}

e. For the Status field, specify the attributes as follows.

 #region Status
 [PXDBString(2, IsFixed = true)]
 [PXDefault(WorkOrderStatusConstants.OnHold)]
 [PXUIField(DisplayName = "Status", Enabled = false)]
 [PXStringList(
 new string[]
 {
 WorkOrderStatusConstants.OnHold,
 WorkOrderStatusConstants.PendingPayment,

Part 1: Data Entry Form (Repair Work Orders) | 24

 WorkOrderStatusConstants.ReadyForAssignment,
 WorkOrderStatusConstants.Assigned,
 WorkOrderStatusConstants.Completed,
 WorkOrderStatusConstants.Paid
 },
 new string[]
 {
 Messages.OnHold,
 Messages.PendingPayment,
 Messages.ReadyForAssignment,
 Messages.Assigned,
 Messages.Completed,
 Messages.Paid
 })]
 public virtual string Status { get; set; }
 public abstract class status : PX.Data.BQL.BqlString.Field<status> { }
 #endregion

f. For the Priority field, specify the attributes as follows.

 #region Priority
 [PXDBString(1, IsFixed = true)]
 [PXDefault(WorkOrderPriorityConstants.Medium)]
 [PXUIField(DisplayName = "Priority")]
 [PXStringList(
 new string[]
 {
 WorkOrderPriorityConstants.High,
 WorkOrderPriorityConstants.Medium,
 WorkOrderPriorityConstants.Low
 },
 new string[]
 {
 Messages.High,
 Messages.Medium,
 Messages.Low
 })]
 public virtual string Priority { get; set; }
 public abstract class priority : PX.Data.BQL.BqlString.Field<priority> { }
 #endregion

5. For the Hold field, add the following attribute.

 #region Hold
 [PXDBBool()]
 [PXDefault(true)]
 public virtual bool? Hold { get; set; }
 public abstract class hold : PX.Data.BQL.BqlBool.Field<hold> { }
 #endregion

6. Define the attributes of the OrderTotal field, as the following code shows.

 #region OrderTotal
 [PXDBDecimal()]
 [PXDefault(TypeCode.Decimal, "0.0")]
 [PXUIField(DisplayName = "Order Total", Enabled = false)]
 public virtual Decimal? OrderTotal { get; set; }

Part 1: Data Entry Form (Repair Work Orders) | 25

 public abstract class orderTotal : PX.Data.BQL.BqlDecimal.Field<orderTotal>
 { }
 #endregion

7. Define the attributes of the InvoiceNbr field as follows.

 #region InvoiceNbr
 [PXDBString(15, IsUnicode = true)]
 [PXUIField(DisplayName = "Invoice Nbr.", Enabled = false)]
 public virtual string InvoiceNbr { get; set; }
 public abstract class invoiceNbr : PX.Data.BQL.BqlString.Field<invoiceNbr> { }
 #endregion

8. Build the project.

9. Create controls for all fields of the RSSVWorkOrder DAC except the system fields.

You can create controls by using the Screen Editor of the Customization Project Editor or by
editing the ASPX code of the form directly in Visual Studio.

Related Links

• Input Controls
• Complex Input Controls
• To Configure an Input Mask and a Display Mask for a Field
• PXSelectorAttribute Class
• PXDBDateAndTimeAttribute Class
• PXStringListAttribute Class
• Box (Control for a Data Field)

Step 1.1.3: Configuring the Layout of the Summary Area of the Form

In this step, you will organize the layout of the Summary area of the Repair Work Orders (RS301000) form to the
specifications in Layout of the Form. You will do the following:

• By adding the layout rules (PXLayoutRule) with the StartRow = "True" and StartColumn =
"True" properties to the form, you will define three columns of controls on the page.
When you create any form from a template, the form already contains the PXLayoutRule element with
StartRow = "True". You should keep this element for the proper layout.

• By using the ControlSize and LabelsWidth properties of PXLayoutRule, you will configure the size
of controls and labels in the Summary area of the form.
You need to adjust the size of the controls and labels in columns. Typically, you specify the sizes in the
layout rules with StartRow = "True" and StartColumn = "True". You can also specify specific
sizes for a particular control.

The PXDateTimeEdit and PXNumberEdit control types have a predefined Width
property value, which you cannot change by setting the ColumnWidth or ControlSize
property values for the appropriate PXLayoutRule component. You can specify the size of
the controls of these types by using the Size property.

• By using the ColumnSpan property of PXLayoutRule, you will expand the Description field to span
two columns of controls.
The ColumnSpan property specifies the number of columns that the next control spans. The
ColumnSpan property affects only the control that follows the layout rule.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=87817ddf-d7ad-4ece-b151-c88c434b7318
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=e4cb712a-076e-4da4-b7dc-79be3192e8ef
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d0758787-4c73-423b-8566-11c83f3acde8
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ed489c0-36a3-9790-7bcd-5072e718a728
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=0fe1d7bb-3452-b2b0-c70c-0de73c8a3c37
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=426773d0-8861-2fe4-d789-0d7d41f8bae9
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c26bf6db-2dbd-4e3e-98f5-edf78a174e2e

Part 1: Data Entry Form (Repair Work Orders) | 26

The basic approach to designing a form is to start any form layout with a layout rule with StartRow = "True";
this layout rule starts the first column of controls and adds proper margins between controls on the form. Then you
can add as many layout rules as you need. You can specify the size of controls and labels in layout rules or define
these sizes directly in the control properties. Unless the size is overridden in a control, the size that is specified in a
layout rule is applied to all controls that follow this rule until the next layout rule.

To configure the layout of the form, you can use the Screen Editor of the Customization Project Editor
or edit the ASPX code of the form directly in Visual Studio. The addition of controls with the Screen
Editor and with Visual Studio is described in Step 1.5.1: Add Columns to the Grid and Step 2.3.1: Add
Input Controls (respectively) of the T200 Maintenance Forms training course. The instructions below
are presented in general terms to accommodate both methods.

Configuring the Layout of the Summary Area

Complete the following steps:

1. In the Screen Editor for the Repair Work Orders form or in the ASPX code of the Pages\RS
\RS301000.aspx file of the site, reorder the fields in the Summary area of the form (PXFormView
control) so that they are located in the following order:

• Order Nbr.

• Status

• Date Created

• Date Completed

• Priority

• Customer ID

• Service

• Device

• Assignee

• Description

• Order Total

• Invoice Nbr.

2. Set the CommitChanges of the Customer ID control to True.

It will allow the system to retrieve and display the customer name along with the customer ID when the
customer is selected.

3. Under the Priority and Description fields, add the layout rules with StartColumn = "True"
(which are the Column controls in the Screen Editor). The following ASPX code shows an example of the
layout rule with StartColumn = "True".

 <px:PXLayoutRule runat="server" ID="CstPXLayoutRule16"
 StartColumn="True" ControlSize="XM" LabelsWidth="S" ></px:PXLayoutRule>

4. Set the ControlSize property value for layout rules of the form control as follows:

• For the first layout rule, SM
• For the second layout rule, XM
• For the third layout rule, M

5. Set the LabelsWidth property value to S for all layout rules of the form control.

6. Add an empty layout rule (which is the Empty Rule control in the Screen Editor) before the control for the
Description field. Set the ColumnSpan property for the layout rule to 2. The following ASPX code
shows the layout rule with ColumnSpan = "2".

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d663ce6d-f042-4802-8d03-7c777ed603fe
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=233c3164-a380-4588-b97e-5d8a9e6e949b
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=233c3164-a380-4588-b97e-5d8a9e6e949b

Part 1: Data Entry Form (Repair Work Orders) | 27

 <px:PXLayoutRule runat="server" ID="CstLayoutRule18" ColumnSpan="2" >
 </px:PXLayoutRule>
 <px:PXTextEdit runat="server" ID="CstPXTextEdit7" DataField="Description" >
 </px:PXTextEdit>

7. Clear the Height property of the PXFormView control.

PXFormView control automatically calculate their Height based on the size of visible
controls that they contain.

8. Save your changes. The resulting definition of the Summary area should look as the following code shows.

<px:PXFormView ID="form" runat="server" DataSourceID="ds" DataMember="WorkOrders"
 Width="100%" Height="" AllowAutoHide="false">
 <Template>
 <px:PXLayoutRule ControlSize="SM" LabelsWidth="S" ID="PXLayoutRule1"
 runat="server" StartRow="True"></px:PXLayoutRule>
 <px:PXSelector runat="server" ID="CstPXSelector11" DataField="OrderNbr" >
 </px:PXSelector>
 <px:PXDropDown runat="server" ID="CstPXDropDown20" DataField="Status" >
 </px:PXDropDown>
 <px:PXDateTimeEdit runat="server" ID="CstPXDateTimeEdit6" DataField="DateCreated"
 >
 </px:PXDateTimeEdit>
 <px:PXDateTimeEdit runat="server" ID="CstPXDateTimeEdit5"
 DataField="DateCompleted" >
 </px:PXDateTimeEdit>
 <px:PXDropDown runat="server" ID="CstPXDropDown13" DataField="Priority" >
 </px:PXDropDown>
 <px:PXLayoutRule runat="server" ID="CstPXLayoutRule16"
 StartColumn="True" ControlSize="XM" LabelsWidth="S" ></px:PXLayoutRule>
 <px:PXSegmentMask CommitChanges="True" runat="server"
 ID="CstPXSegmentMask4" DataField="CustomerID" >
 </px:PXSegmentMask>
 <px:PXSelector runat="server" ID="CstPXSelector14" DataField="ServiceID" >
 </px:PXSelector>
 <px:PXSelector runat="server" ID="CstPXSelector8" DataField="DeviceID" >
 </px:PXSelector>
 <px:PXSelector runat="server" ID="CstPXSelector3" DataField="Assignee" >
 </px:PXSelector>
 <px:PXLayoutRule runat="server" ID="CstLayoutRule18" ColumnSpan="2" >
 </px:PXLayoutRule>
 <px:PXTextEdit runat="server" ID="CstPXTextEdit7" DataField="Description" >
 </px:PXTextEdit>
 <px:PXLayoutRule runat="server" ID="CstPXLayoutRule17"
 StartColumn="True" ControlSize="M" LabelsWidth="S" >
 </px:PXLayoutRule>
 <px:PXNumberEdit runat="server" ID="CstPXNumberEdit12" DataField="OrderTotal" >
 </px:PXNumberEdit>
 <px:PXTextEdit runat="server" ID="CstPXTextEdit10" DataField="InvoiceNbr" >
 </px:PXTextEdit>
 </Template>
</px:PXFormView>

9. Publish the customization project.

Part 1: Data Entry Form (Repair Work Orders) | 28

10.In the Summary area of the Repair Work Orders form (shown in the following screenshot), make sure all of
the following conditions are met:

• The controls are arranged into three columns.
• The Description box is expanded across two columns.
• The labels of all controls are fully displayed.

Figure: The layout of the Summary area

Related Links

• Layout Rule (PXLayoutRule)
• Use of the StartRow and StartColumn Properties of PXLayoutRule
• Use of the ColumnWidth, ControlSize, and LabelsWidth Properties of PXLayoutRule
• Use of the ColumnSpan Property of PXLayoutRule
• Predefined Size Values

Step 1.1.4: Configuring Form View Mode for the Grid

In this example, you will configure form view mode for the Repair Items tab of the Repair Work Orders (RS301000)
form; this mode is shown in the following screenshot. The mode provides the capability to edit a single record that
has been selected in the grid. If a user selects a record in the grid and then clicks the Switch Between Grid and
Form button on the table toolbar, the selected record is displayed in the form view.

You will arrange controls in the form view of the grid by using layout rules. You will add controls inside the
RowTemplate ASPX element and organize them into two groups by using the PXLayoutRule controls with the
GroupCaption and StartGroup properties specified. The order of controls in form view mode may differ from
the order of columns in grid mode. You will also use the AllowFormEdit property of Mode of PXGrid to make
form view mode available and the SyncPosition of PXGrid to synchronize the values displayed in grid mode
and in form view mode.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=fd1f3fb5-f5f2-4316-882e-a98232bbfba5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=0edb26d6-414d-4bbb-8c30-ed1d2e65e0b8
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=40e018a5-16cc-4395-a59f-481b53a5254f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=41c31abf-2297-4c31-b5c2-848b95f9288f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=ffb4d55f-ef65-4aad-bc01-52bd3df47c6a

Part 1: Data Entry Form (Repair Work Orders) | 29

Figure: Form view mode

Configuring Form View Mode for the Repair Items Tab

Do the following to configure form view mode for the grid on the Repair Items tab:

1. In the Screen Editor for the Repair Work Orders form or in the ASPX code of the Pages\RS
\RS301000.aspx file of the site, for the PXGrid control, set the AllowFormEdit property of Mode to
True.

In the Screen Editor, select the Grid: RepairItems node, and in the Mode group of
layout properties, set the AllowFormEdit property. In Visual Studio, add <Mode
AllowFormEdit="True" ></Mode> inside the PXGrid element, and add the
RowTemplate element inside the PXGridLevel element.

2. For the PXGrid control, set the SyncPosition property to True to display in form view mode the row
that is selected in the grid.

3. For the form view mode, add a layout rule with StartRow = "True".

To add a layout rule for the form view mode in the Screen Editor, you need to select the Tab
> Repair Items > Grid: RepairItems > Levels > RepairItems node and create row on the Add
Controls tab. To create a layout rule for form view mode in Visual Studio, you need to add the
layout rule inside the RowTemplate element.

4. Create the controls in form view mode for the following fields and organize them in the following order:

• RepairItemType

• InventoryID

• InventoryID_description

• BasePrice

Part 1: Data Entry Form (Repair Work Orders) | 30

To create controls for the form view mode in the Screen Editor, you need to select the Tab >
Repair Items > Grid: RepairItems > Levels > RepairItems node and create controls on the
Add Data Fields tab. To create controls for the form view mode in Visual Studio, you need to
add controls inside the RowTemplate element.

5. Configure form view mode of the grid as follows:

a. Add a group layout rule (PXLayoutRule with StartGroup="True") before the Price field and
before the RepairItemType field.

b. Specify the group captions in the GroupCaption property of the group layout rules:

• For the first group, Repair Item
• For the second group, Price Info

c. Enter the following properties for the first group layout rule:

• ControlSize: M
• LabelsWidth: SM

d. Enter the S value for the LabelsWidth property for the second group layout rule.

e. Specify StartColumn = "True" for the second group layout rule.

The following code shows the ASPX of the form view of the Repair Items tab.

<RowTemplate>
 <px:PXLayoutRule runat="server" ID="CstPXLayoutRule21" StartRow="True" >
 </px:PXLayoutRule>
 <px:PXLayoutRule ControlSize="M" LabelsWidth="SM" runat="server"
 ID="CstPXLayoutRule26" StartGroup="True" GroupCaption="Repair Item" >
 </px:PXLayoutRule>
 <px:PXDropDown runat="server" ID="CstPXDropDown25" DataField="RepairItemType" >
 </px:PXDropDown>
 <px:PXSegmentMask runat="server" ID="CstPXSegmentMask23" DataField="InventoryID" >
 </px:PXSegmentMask>
 <px:PXTextEdit runat="server" ID="CstPXTextEdit24"
 DataField="InventoryID_description" >
 </px:PXTextEdit>
 <px:PXLayoutRule LabelsWidth="S" StartColumn="True" GroupCaption="Price Info"
 runat="server" ID="CstPXLayoutRule27" StartGroup="True" ></px:PXLayoutRule>
 <px:PXNumberEdit runat="server" ID="CstPXNumberEdit22" DataField="BasePrice" >
 </px:PXNumberEdit>
</RowTemplate>

6. Save your changes.

7. Publish the customization project.

8. On the toolbar of the Repair Items tab of the Repair Work Orders form, click the Switch Between Grid and
Form button, and review the layout of form view mode. It should look as shown in the following screenshot.

Part 1: Data Entry Form (Repair Work Orders) | 31

Figure: The layout of the form view mode

Related Links

• Configuration of Grids
• Use of the GroupCaption, StartGroup, and EndGroup Properties of PXLayoutRule

Step 1.1.5: Adding the Substitute Form with a Shared Filter to the Project

In this step, you will import the substitute form that has been developed for the Repair Work Orders (RS301000)
form, which is the related entry form.

A shared filter has been developed for and applied to this substitute form. The shared filter displays the repair work
orders that have the Ready for Assignment status. (For details about shared filters, see Saving of Filters for Future
Use.)

You will then add the generic inquiry for the substitute form and the shared filter to the customization project.

Importing the Substitute Form and the Shared Filter

Do the following:

1. On the Generic Inquiry (SM208000) form, import the generic inquiry from the RepairWorkOrders.xml
file provided with this course. The file contains the definition of the generic inquiry and the shared filter.

2. On the Entry Point tab, in the Entry Screen box, select the Repair Work Orders (RS301000) form. Once you
selected the form, the Replace Entry Screen with This Inquiry in Menu check box becomes selected.

3. On the Entry Point tab, make sure the Enable New Record Creation check box is selected.

4. Save your changes.

5. On the Repair Work Orders form, make sure the substitute form with two tabs All Records and To Assign
(shown below) is displayed when you open the form.

When the To Assign filter was saved, the system added the corresponding tab (with the name of the filter) to
the substitute form. The All Records tab shows all records without any filter applied.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=09489570-a3d9-4fef-b6d8-de0a6b4fb5b8
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=1341b9b1-1868-4544-9737-6c521506965f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c5d6bff8-2f29-49af-bb5a-fe876efe07fd
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c5d6bff8-2f29-49af-bb5a-fe876efe07fd
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09

Part 1: Data Entry Form (Repair Work Orders) | 32

Figure: Substitute form

6. On the Generic Inquiries page of the Customization Project Editor, add the generic inquiry to the
PhoneRepairShop customization project.

7. On the Shared Filters page of the Customization Project Editor, add the shared filter to the project as
follows:

a. On the toolbar of the page, click Add New Record.

b. In the Add Shared Filter dialog box, which opens, select the check box in the Selected column for the To
Assign filter.

c. Click OK.

d. Click Save on the page toolbar.

Related Links

• Saving of Filters for Future Use

Lesson Summary

In this lesson, you have learned how to configure the layout of a form. You have used the PXLayoutRule controls
added to ASPX page source code to configure the layout of the Repair Work Orders (RS301000) form as follows:

• Define rows of controls on the form and divide the controls into columns in each row
• Expand UI controls over multiple columns
• Adjust the sizes of controls and their labels
• Group UI controls on a form

The following diagram shows the elements that you have implemented for the configuration of the controls and
the layout of the Repair Work Orders form.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c5d6bff8-2f29-49af-bb5a-fe876efe07fd

Part 1: Data Entry Form (Repair Work Orders) | 33

You have also configured a grid by adding columns to it and configuring controls for the grid columns in form view
mode. You have added input controls to form view of the grid, set their properties, and arranged them, as you
would in any other area of the form that contains a form view (such as the Summary area or a form tab).

The elements that you have added to configure the form view mode of the grid are shown in the following diagram.

Part 1: Data Entry Form (Repair Work Orders) | 34

You have added the substitute form, which has a shared filter, for the custom entry form and included this
substitute form in the customization project.

Part 1: Data Entry Form (Repair Work Orders) | 35

Review Questions

1. Which property of the PXLayoutRule control would you use to divide the controls on a form into two
columns?

a. StartColumn

b. StartRow

c. StartGroup

2. Which attribute would you assign to a DAC field to configure a drop-down list with string values?

a. PXIntList

b. PXStringList

c. PXDropDown

Answer Key

1. a

2. b

Additional Information: Configuration of Controls

In this lesson, you have configured various types of controls on the Repair Work Orders (RS301000) form. However,
particular scenarios of the configuration of controls, such as modification of a drop-down list at runtime and
replacement of the displayed key value at runtime, are outside of the scope of the course but may be useful to
some readers.

Modifying a Drop-Down List in Runtime

You can modify a drop-down list at runtime by using the SetList<>() static method of the PXStringList
attribute. You can do this in the RowSelected event handler or graph constructor.

For details about this and other options to configure a drop-down list, see Configuration of Drop-Down Lists in the
documentation.

Replacing the Displayed Key Value

The SubstituteKey property specifies the field whose value should be shown in the control in the UI instead of
the field that is specified in the Search<> command.

For details about the configuration of selectors in code, see Configuration of Selector Controls. For more information
about how to change the external presentation in run time, see Internal and External Presentation of Values.

Replacing Attributes of DAC Fields in CacheAttached

The attributes that you add to a data field in the DAC are initialized once, during the startup of the domain. You can
replace attributes for a particular field by defining the CacheAttached event handler for this field in a graph.
These attributes are also initialized once, on the first initialization of the graph where you define this method.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=7ae228cf-c106-4766-a5fe-d267bfd88779
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=fa079f56-6579-4984-88a9-139214a0750e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=0f4f3154-49c0-4d60-865b-448bc49e1b18

Part 1: Data Entry Form (Repair Work Orders) | 36

For details about replacement of attributes of DAC fields, see Replacement of Attributes for DAC Fields in
CacheAttached.

Additional Information: Layout Configuration

In this lesson, you have learned how to configure the layout of the form. Two scenarios of layout configuration,
aligning controls horizontally and hiding the labels of controls, are outside of the scope of this course but may be
useful to some readers.

Horizontal Alignment of Controls

Horizontal alignment is performed for the controls that are placed between a layout rule with the Merge property
set to True and the next layout rule. Therefore, to cancel merging for all of the following controls, you have to add a
PXLayoutRule component with or without the Merge property specified.

For more information about the Merge property, see Use of the Merge Property of PXLayoutRule.

Hiding of Labels of Controls

To hide the labels of the controls placed within a column, you should set the SuppressLabel property value
of the PXLayoutRule component of the column to True. Then within the column, all check boxes are placed
without any space to the le of the input control, and the labels of other controls are hidden.

For details about the SuppressLabel property, see Use of the SuppressLabel Property of PXLayoutRule.

Lesson 1.2: Copying Field Values from One Record to Another

In this lesson, for the Repair Work Orders (RS301000) form, you will implement the business logic that includes the
following requirements:

• When values have been selected in the Service and Device boxes of the Summary area of the form, these
values correspond to those in a record entered on the Services and Prices (RS203000) form, and no records
have been added on the Repair Items and Labor tabs, the default records that have been configured on the
Services and Prices form are inserted on the tabs.

• For a particular row, if a value is selected in the Inventory ID column, the values in the Repair Item Type
and Price columns will be changed to the repair item type and base price (respectively) of the selected stock
item as specified on the Stock Items (IN202500) form. (This business logic replicates the business logic that
have been defined for the Repair Items tab of the Services and Prices form. You will implement this logic on
your own.)

Lesson Objectives

You will learn how to copy the field values from one record to another record by using event handlers.

Step 1.2.1: Creating a Work Order from a Template (with RowUpdated)

Managers of the Smart Fix company define the prices for particular services and devices on the Services and Prices
(RS203000) form. These prices are used as templates for the creation of work orders on the Repair Work Orders
(RS301000) form. When a customer comes to an office of the Smart Fix company to repair a phone, a consultant in
the office creates a repair work order on the Repair Work Orders (RS301000) form. When the consultant selects a

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=80e817bd-e70b-45b9-a9b1-2d2d0e2f8ee2
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=80e817bd-e70b-45b9-a9b1-2d2d0e2f8ee2
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=325b7979-f32d-40eb-920b-7880245e8a26
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=618baa6a-524a-4e0b-bf1a-dfe28c1205e8
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

Part 1: Data Entry Form (Repair Work Orders) | 37

particular service and device for a new repair work order, the default information about the price for the service,
which a manager has entered on the Services and Prices form, should be copied to the new work order.

In this step, you will implement the copying of the default records configured on the Services and Prices (RS203000)
form to the Repair Items and Labor tabs of the Repair Work Orders (RS301000) form. The default record or records
should be inserted when a user creates a new work order on the form and the following criteria are met:

• In the Service and Device boxes of the Summary area of the form, the user selects the values for which a
record has been defined on the Services and Prices form.

• No records have been added on the Repair Items and Labor tabs.

Because you need to insert details on the Repair Work Orders form when values of two fields of one record are
specified, you will implement the RowUpdated event handler for the RSSVWorkOrder DAC. In this handler, you
will do the following:

• To check that a new RSSVWorkOrder record has been inserted, you will use the Cache.GetStatus
method of the WorkOrders data view. An inserted record maintains the Inserted status until it is saved
to the database even if it has been updated. When the inserted record is deleted, it is assigned the specific
InsertedDeleted status.

• To display the data records in the UI, you will insert them in PXCache by using the Insert method of
the RepairItems data view. The Insert method is invoked on the PXCache object of the first DAC
specified in the data view type (which is the main DAC of the data view). Once you inserted the record, it has
the default values specified for the fields.

In Acumatica ERP, before a new record can be inserted in PXCache, it is required that all key
fields of this record are assigned some values. Since both OrderNbr and InventoryID
fields must be the key fields for the RSSVWorkOrderLabor DAC, you need to assign a value
to the InventoryID field. You do not need to explicitly assign a value to the OrderNbr field
because it has PXDBDefault attached to it. The PXDBDefault attribute is responsible for
generating and assigning a default value when the FieldDefaulting event is raised for
this field, which always happens before the record is inserted in PXCache.

• Because you update the values of the inserted records, you need to call the Update method of PXCache to
trigger all the events related to the update of the fields of a detail record.

For details about modifications in PXCache, see Modification of Data in a PXCache Object in the documentation.

Inserting the Default Repair Items and Labor to the Tabs

Do the following:

1. Add the following RowUpdated event handler to the RSSVWorkOrderEntry graph.

#region Events
//Copy repair items and labor items from the Services and Prices form.
protected virtual void _(Events.RowUpdated<RSSVWorkOrder> e)
{
 if (WorkOrders.Cache.GetStatus(e.Row) == PXEntryStatus.Inserted &&
 !e.Cache.ObjectsEqual<RSSVWorkOrder.serviceID, RSSVWorkOrder.deviceID>(e.Row,
 e.OldRow))
 {
 if (e.Row.ServiceID != null && e.Row.DeviceID != null &&
 !IsCopyPasteContext && RepairItems.Select().Count == 0 &&
 Labor.Select().Count == 0)
 {
 //Retrieve the default repair items
 var repairItems = SelectFrom<RSSVRepairItem>.

 Where<RSSVRepairItem.serviceID.IsEqual<RSSVWorkOrder.serviceID.FromCurrent>.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=7098eac5-90f1-4043-aaaf-c64cb2bc95e5

Part 1: Data Entry Form (Repair Work Orders) | 38

 And<RSSVRepairItem.deviceID.IsEqual<RSSVWorkOrder.deviceID.FromCurrent>>>
 .View.Select(this);
 //Insert default repair items
 foreach (RSSVRepairItem item in repairItems)
 {
 RSSVWorkOrderItem orderItem = RepairItems.Insert();
 orderItem.RepairItemType = item.RepairItemType;
 orderItem.InventoryID = item.InventoryID;
 orderItem.BasePrice = item.BasePrice;
 RepairItems.Update(orderItem);
 }

 //Retrieve the default labor items
 var laborItems = SelectFrom<RSSVLabor>.

 Where<RSSVLabor.serviceID.IsEqual<RSSVWorkOrder.serviceID.FromCurrent>.

 And<RSSVLabor.deviceID.IsEqual<RSSVWorkOrder.deviceID.FromCurrent>>>
 .View.Select(this);
 //Insert the default labor items
 foreach (RSSVLabor item in laborItems)
 {
 RSSVWorkOrderLabor orderItem = new RSSVWorkOrderLabor();
 orderItem.InventoryID = item.InventoryID;
 orderItem = Labor.Insert(orderItem);
 orderItem.DefaultPrice = item.DefaultPrice;
 orderItem.Quantity = item.Quantity;
 orderItem.ExtPrice = item.ExtPrice;
 Labor.Update(orderItem);
 }
 }
 }
}
#endregion

2. Rebuild the project.

3. In the RS301000.aspx file or in the Screen Editor, for the ServiceID and DeviceID fields, set
CommitChanges to True.

4. Save your changes.

5. Publish the customization project.

Testing the Logic

On the Repair Work Orders form, do the following:

1. Create a work order with the following settings:

• Order Nbr.: 000001
• Customer ID: C000000001
• Service: Battery Replacement
• Device: Nokia 3310
• Description: Battery replacement, Nokia 3310

Part 1: Data Entry Form (Repair Work Orders) | 39

During the T210 Customized Forms and Master-Detail Relationship course, the price was defined on the
Services and Prices (RS203000) form for this pair of service and device.

2. Make sure the detail lines are inserted on the Repair Items and Labor tabs.

3. Change the value in the Service box to Liquid Damage.

4. Make sure the detail lines on the Repair Items and Labor tabs remain the same. The new detail lines must
be inserted only if the Repair Items and Labor tabs contain no records.

5. Change the value in the Service box back to Battery Replacement.

6. Save the record.

Related Links

• Modification of Data in a PXCache Object
• RowUpdated Event

Step 1.2.2: Updating Fields of the Same Record on Update of a Field (with
FieldUpdated and FieldDefaulting)—Self-Guided Exercise

For a particular row on the Repair Items tab of the Repair Work Orders (RS301000) form, if a user selects a value in
the Inventory ID column, the values in the Repair Item Type and Price columns should be changed to the repair
item type and base price (respectively) of the selected stock item as specified on the Stock Items (IN202500) form.

In this step, you will add on your own code that copies the RSSVWorkOrderItem.BasePrice
and RSSVWorkOrderItem.RepairItemType values from the stock item record when the
RSSVWorkOrderItem.InventoryID value is changed.

Updating Fields of the Same Record on Update of the InventoryID Field

As you implement the logic, add the FieldUpdated event handler for the
RSSVWorkOrderItem.InventoryID field and the FieldDefaulting event handler for the
RSSVWorkOrderItem.BasePrice field in the RSSVWorkOrderEntry class. Also, you should set the
CommitChanges property of the RSSVWorkOrderItem.InventoryID in the form ASPX.

You can use the instructions provided in Step 2.2.2: Updating Fields of the Same Record on Update of a Field (with
FieldUpdated and FieldDefaulting) of the T210 Customized Forms and Master-Detail Relationship training course.

Testing the Logic

On the Repair Work Orders (RS301000) form, do the following:

1. Open the 000001 work order.

2. On the Repair Items tab, add a row for a repair item of the Battery type, and select the BAT3310EX stock item
in the Inventory ID column. Shi the focus away from the box. Make sure the system has filled in values in
the Description and Price columns.

3. Remove the BAT3310EX repair item from the list.

4. Save the record.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=7098eac5-90f1-4043-aaaf-c64cb2bc95e5
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=fcb1a36f-0dce-61ca-a67e-7d7bf6117948
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d10b9e8e-ef18-467f-b02d-05dee119bffb
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d10b9e8e-ef18-467f-b02d-05dee119bffb

Part 1: Data Entry Form (Repair Work Orders) | 40

Lesson Summary

In this lesson, you have learned how to implement basic business logic in a data entry form based on the example
of the Repair Work Orders (RS301000) form. You have used the following event handlers to implement changes in
the business logic:

• RowUpdated: To copy the values of fields of detail records from other records.
• FieldUpdated and FieldDefaulting: To modify the values of a detail record on update of the

Inventory ID column of this detail record.

The following diagram summarizes the implementation.

Part 1: Data Entry Form (Repair Work Orders) | 41

Review Question

1. Suppose that a user is being created a record on the Stock Items (IN202500) form. The user has specified the
values in Inventory ID, Description, and Item Status of the new record and has not yet saved the record.
Now the user is changing the value in the Description field. Which status has the new record in PXCache?

a. Updated

b. InsertedUpdated

c. Inserted

d. InsertedDeleted

Answer Key

1. c

Lesson 1.3: Validating the Field Values

In this lesson, you will implement the validation of particular field values on the Repair Work Orders (RS301000)
form. The validation business logic includes the following requirements:

• For each row on the Labor tab, the value in the Quantity column must satisfy the following conditions:
• The value must be greater than or equal to 0.
• The value must be greater than or equal to the value in the Quantity column specified for the

corresponding record on the Labor tab of the Services and Prices form (that is, the record that has the
same inventory ID, service ID, and device ID on the Services and Prices form as the current row on the
Labor tab of the Repair Work Orders form.)

• For a service that requires a preliminary check, the priority of a work order must be at least Medium. The
preliminary check requirement is specified on the Repair Services (RS201000) form. When a user selects a
service in the Summary area, the system must check whether the priority is high enough for the service. If
the priority is too low, the system must display an error and cancel the update of the record.

Lesson Objectives

You will learn how to validate the following values:

• The value of a field that does not depend on the values of other fields of the same record
• The value of a field that depends on the values of other fields of the same record

Step 1.3.1: Validating an Independent Field Value (with FieldVerifying)

In this step, you will implement the validation of the value in the Quantity column on the Labor tab of the Repair
Work Orders (RS301000) form. For each row on this tab, the value in the Quantity column must be greater than or
equal to 0. The value also must be greater than or equal to the value specified for the corresponding record on the
Labor tab of the Services and Prices (RS203000) form (that is, the record that has the same inventory ID, service ID,
and device ID on the Services and Prices form as the current row on the Labor tab of the Repair Work Orders form).
Thus, a nonnegative quantity must be specified for each row, and the value specified for the labor on the Labor tab

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

Part 1: Data Entry Form (Repair Work Orders) | 42

of the Services and Prices form (for the same service and device as those selected on the Repair Work Orders form)
will function as a minimum quantity.

You will implement the FieldVerifying event handler for the Quantity field of the RSSVWorkOrderLabor
DAC. This event handler is intended for field validation that is independent of other fields in the same data record.
For details about the validation of independent field values, see Validation of Field Values.

In the event handler, you will do the following:

• When the new value in the Quantity column is negative, you will throw an exception (by using
PXSetPropertyException) to cancel the assignment of the new value to the Quantity field.

• When the value is not negative but is smaller than the default quantity specified on the Services and
Prices form (in the RSSVLabor.Quantity field), you will attach the exception to the field by using
the RaiseExceptionHandling method and exit the method normally. This method will display a
warning for the validated data field but will not raise an exception, so that the method finishes normally and
e.NewValue is set.
To attach a warning to the control, you will specify PXErrorLevel.Warning in the
PXSetPropertyException constructor.

RaiseExceptionHandling, which is used to prevent the saving of a record or to
display an error or warning on the form, cannot be invoked on a PXCache instance in the
following event handlers: FieldDefaulting, FieldSelecting, RowSelecting, and
RowPersisted. For details, see RaiseExceptionHandling in the API Reference.

To select the default data record from the RSSVLabor DAC, you will configure a fluent BQL query
with three required parameters. In the Select() method that executes the query, as the parameters,
you will pass the values of RSSVWorkOrder.ServiceID, RSSVWorkOrder.DeviceID, and
RSSVWorkOrderLabor.InventoryID from the row for which the event is triggered. To use parameters
in a fluent BQL query, you need to add the PX.Data.BQL using directive to the code. For details about the
parameters in fluent BQL, see Parameters in Fluent BQL.

Validating the Value of the Quantity Field

To validate the value of the Quantity field, do the following:

1. In the Messages.cs file, add the following constants to the Messages class.

public const string QuantityCannotBeNegative =
 "The value in the Quantity column cannot be negative.";
public const string QuantityToSmall = @"The value in the Quantity column
 has been corrected to the minimum possible value.";

2. In the RSSVWorkOrderEntry.cs file, add the following using directive (if it has not been added yet).

using PX.Data.BQL;

3. Add the following FieldVerifying event handler to the RSSVWorkOrderEntry graph.

//Validate that Quantity is greater than or equal to 0 and
//correct the value to the default if the value is less than the default.
protected virtual void _(Events.FieldVerifying<RSSVWorkOrderLabor,
 RSSVWorkOrderLabor.quantity> e)
{
 if (e.Row == null || e.NewValue == null) return;

 if ((decimal)e.NewValue < 0)
 {
 //Throwing an exception to cancel the assignment of the new value to the field

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=e81718ca-f1c5-4f4a-aa3b-a7736da6ca25
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=d4b3d85d-df93-5bfa-9c3d-9e114f73e931
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=9d56ea11-0768-4f4d-b7ab-1cea724c42cb

Part 1: Data Entry Form (Repair Work Orders) | 43

 throw new PXSetPropertyException(Messages.QuantityCannotBeNegative);
 }

 var workOrder = WorkOrders.Current;
 if (workOrder != null)
 {
 //Retrieving the default labor item related to the work order labor
 RSSVLabor labor = SelectFrom<RSSVLabor>.
 Where<RSSVLabor.serviceID.IsEqual<@P.AsInt>.
 And<RSSVLabor.deviceID.IsEqual<@P.AsInt>>.
 And<RSSVLabor.inventoryID.IsEqual<@P.AsInt>>>
 .View.Select(this, workOrder.ServiceID, workOrder.DeviceID,
 e.Row.InventoryID);
 if (labor != null && (decimal)e.NewValue < labor.Quantity)
 {
 //Correcting the LineQty value
 e.NewValue = labor.Quantity;
 //Raising the ExceptionHandling event for the Quantity field
 //to attach the exception object to the field
 e.Cache.RaiseExceptionHandling<RSSVWorkOrderLabor.quantity>(e.Row,
 e.NewValue,
 new PXSetPropertyException(Messages.QuantityToSmall,
 PXErrorLevel.Warning));
 }
 }
}

4. Rebuild the project.

5. In the Screen Editor or in the ASPX code in Visual Studio, make sure that CommitChanges is set to True
for the Quantity field in the grid of the Labor tab on the Repair Work Orders (RS301000) form.

6. Save your changes on the page.

7. Publish the customization project.

Testing the Validation

To check the validation, on the Repair Work Orders (RS301000) form, do the following:

1. Select the work order with the 000001 order number.

2. On the Labor tab, in the row for the CONSULT labor item, change the value in the Quantity column to -1
and press Enter. Make sure the error is displayed, as shown in the following screenshot.

Part 1: Data Entry Form (Repair Work Orders) | 44

Figure: The error for a negative value

3. Change the value to 0.5, which is smaller than the default value of 1. Make sure that the warning message
is generated on the control and the value is corrected to 1, as shown in the following screenshot.

Figure: The warning message

4. Change the value to 2. Make sure no warning or error is displayed.

5. Save the changes.

Related Links

• Validation of Field Values
• Validation of a Data Record

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=e81718ca-f1c5-4f4a-aa3b-a7736da6ca25
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=15fa31a5-1468-4290-b5ce-d0002e23be0e

Part 1: Data Entry Form (Repair Work Orders) | 45

• Parameters in Fluent BQL
• PXCache.RaiseExceptionHandling Method

Step 1.3.2: Validating Dependent Fields of Records (with RowUpdating)

For a service that requires a preliminary check, the priority of a work order must be at least Medium. The
preliminary check requirement is specified on the Repair Services (RS201000) form. When a user selects a service in
the Summary area, the system must check whether the priority is high enough for the service. If the priority is too
low, the system must display an error and cancel the update of the record.

In this step, you will implement validation of the Priority field of a work order record in the RowUpdating
event handler. Because the Priority field depends on the ServiceID field of a work order record, you will use
the RowUpdating event handler. The RowUpdating event happens during the update of a data record aer all
field-related events. At this moment, the modifications haven't been applied to the data record stored in the cache
yet, and you can cancel the update process.

The event arguments give you access to:

• e.NewRow: The modified version of the work order record, which contains all changes made by field-
related events

• e.Row: The copy of the original work order record stored in the cache

You will use the ObjectsEqual<>() method of the cache to compare these two records to find out if the
Priority or the ServiceID field has changed.

You will mark the Priority field whose value doesn't pass validation with an error message—by calling the
RaiseExceptionHandling<>() method of the cache. You will also assign the proper Priority field value.

If you want to cancel the changes which have not been saved in the cache, set the Cancel property
of the event arguments to true.

Validating a Work Order Record

To validate a work order record, do the following:

1. In the Messages.cs file, add the following constant to the Messages class.

public const string PriorityTooLow =
 @"The priority must be at least Medium for
 the repair service that requires preliminary check.";

2. Add the following RowUpdating event handler to the RSSVWorkOrderEntry graph.

//Display an error if the priority is too low for the selected service
protected virtual void _(Events.RowUpdating<RSSVWorkOrder> e)
{
 // The modified data record (not in the cache yet)
 RSSVWorkOrder row = e.NewRow;
 // The data record that is stored in the cache
 RSSVWorkOrder originalRow = e.Row;

 if (!e.Cache.ObjectsEqual<RSSVWorkOrder.priority,
 RSSVWorkOrder.serviceID>(row, originalRow))
 {
 if (row.Priority == WorkOrderPriorityConstants.Low)
 {
 //Obtain the service record

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=9d56ea11-0768-4f4d-b7ab-1cea724c42cb
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=d4b3d85d-df93-5bfa-9c3d-9e114f73e931

Part 1: Data Entry Form (Repair Work Orders) | 46

 RSSVRepairService service = SelectFrom<RSSVRepairService>.
 Where<RSSVRepairService.serviceID.IsEqual<@P.AsInt>>.
 View.Select(this, row.ServiceID);

 if (service != null && service.PreliminaryCheck == true)
 {
 //Display the error for the Priority field
 WorkOrders.Cache.RaiseExceptionHandling<RSSVWorkOrder.priority>(row,
 originalRow.Priority,
 new PXSetPropertyException(Messages.PriorityTooLow));

 //Assign the proper priority
 e.NewRow.Priority = WorkOrderPriorityConstants.Medium;
 }
 }
 }
}

3. Rebuild the project.

4. In the Screen Editor or in ASPX code in Visual Studio, set CommitChanges to True for the Priority field
in the Summary area of the Repair Work Orders (RS301000) form and make sure the Service box has the
same setting.

5. Publish the customization project.

Testing the Logic

To check the validation, on the Repair Work Orders (RS301000) form, do the following:
1. Select the work order with the 000001 order number.

2. In the Priority box, select Low.

3. In the Service box, select the Liquid Damage repair service which requires preliminary check. Make sure the
error is displayed as the following screenshot shows.

Figure: The error on the page

Part 1: Data Entry Form (Repair Work Orders) | 47

4. Click Cancel on the form toolbar. The changes are discarded and the error is no longer displayed.

5. In the Service box, select the Liquid Damage service without changing the priority.

6. Save your changes. The saving is performed without errors.

7. In the Service box, select the Battery Replacement service, and in the Priority box, select Low.

8. Save your changes. The saving is performed without errors.

Related Links

• Validation of a Data Record
• PXRowUpdating Event
• PXStringListAttribute
• PXCache.RaiseExceptionHandling Method
• PXCache.ObjectsEqual Method

Lesson Summary

In this lesson, you have learned how to implement validation business logic in a data entry form based on the
example of the Repair Work Orders (RS301000) form. You have used the following event handlers to implement
changes in the business logic:

• FieldVerifying: To verify the value of a field that does not depend on other fields of the same record.
In this event handler, you have thrown an exception by using PXSetPropertyException to display an
error and cancel the assignment of the new value. To display a warning, you have attached the exception to
the field by using the RaiseExceptionHandling method.

• RowUpdating: To verify the value of a field that depends on another field of the same record. In this
event handler, you have attached the PXSetPropertyException exception to the field by using the
RaiseExceptionHandling method and canceled the update of the record.

The following diagram summarizes the implementation.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=15fa31a5-1468-4290-b5ce-d0002e23be0e
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=787ff1db-8126-07e2-3e17-85bce318589c
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=426773d0-8861-2fe4-d789-0d7d41f8bae9
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=d4b3d85d-df93-5bfa-9c3d-9e114f73e931
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=df7021df-c151-bc36-4d18-af793f100088

Part 1: Data Entry Form (Repair Work Orders) | 48

Review Questions

1. Which of the following objects would you use to throw an exception to cancel the assignment of a new value
to a field?

a. e.Cancel of the FieldVerifying event handler

b. PXSetPropertyException

c. RaiseExceptionHandling

2. Which event handler should be used to validate an independent field value?

a. FieldDefaulting

b. FieldSelecting

c. FieldVerifying

d. FieldUpdated

e. RowSelected

3. Which event handler is used to update a value of a dependent field within a particular data record?

a. FieldDefaulting

b. FieldSelecting

c. FieldVerifying

d. FieldUpdated

e. RowSelected

Part 1: Data Entry Form (Repair Work Orders) | 49

4. How would you specify a required integer parameter in a fluent BQL query?

a. @P.AsInt

b. Argument.AsInt

c. @P

d. Argument

Answer Key

1. b

2. c

3. d

4. a

Part 2: Setup Form (Repair Work Order Preferences) | 50

Part 2: Setup Form (Repair Work Order Preferences)

In Acumatica ERP, administrators use setup forms to provide particular configuration parameters for the
application. A set of configuration parameters is stored in a single record in the corresponding setup table of the
database. By using a setup form, a user can edit this record: for example, turn on or off particular functionality,
specify default values, or specify the numbering settings to be used to number documents. Setup forms are used
very rarely, usually in the very beginning of application implementation and use.

The names of ASPX pages for setup start with a two-letter abbreviation (indicating the functional area of the form)
followed by 10. For instance, RS101000.aspx will be used as the name of the ASPX page for the Repair Work
Order Preferences form, which will provide the configuration for the auto-numbering of repair work orders and the
default identifier for a walk-in customer.

The names of the graphs for setup forms have the Maint suffix (as maintenance forms do).

Aer you complete the lessons of this part, you will be able to test the auto-numbering functionality.

Lesson 2.1: Configuring the Auto-Numbering of a Field Value

In this lesson, you will create a setup form and learn how to configure auto-numbering of a field value on a data
entry form. You will create the Repair Work Order Preferences (RS101000) setup form and configure the auto-
numbering of repair work order numbers by using the AutoNumber attribute defined in the PX.Objects.CS
namespace.

Description of the Form Elements

The form will contain the following elements (which are shown in the following screenshot):

• Numbering Sequence: A box to contain the numbering sequence that should be used to auto-number
repair work order records. By default, the value is set to the WORKORDER numbering sequence, which has
been preconfigured for this course on the Numbering Sequences (CS201010) form.

• Walk-In Customer: A box to hold the customer ID that should be used by default for the work orders for
walk-in repair services—that is, repair services that have the Walk-In Service check box selected on the
Repair Services (RS201000) form. This logic will not be implemented in this training course.

• Default Employee: A box to hold the default assignee for repair work orders. This logic will not be
implemented in this training course.

• Prepayment Percent: A box to contain the percent of prepayment that a customer should pay for a service
that requires prepayment—that is, the service that has the Requires Prepayment check box selected on the
Repair Services (RS201000) form. This logic will not be implemented in this training course.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d11c23-21f2-42a3-b17d-9637c9cf8031

Part 2: Setup Form (Repair Work Order Preferences) | 51

Figure: Repair Work Order Preferences form

Configuration of Auto-Numbering

The PX.Objects.CS.AutoNumberAttribute attribute inserts a new number into each new document
created by a user before the record is saved to the database. This attribute is designed to use a numbering
sequence that has been defined on the Numbering Sequences (CS201010) form. You will configure the attribute to
retrieve the numbering sequence ID from the RSSVSetup table, which you have created in Initial Configuration.

The RSSVSetup DAC consists of data fields that represent configuration parameters and standard system fields.
The corresponding columns in the database should not be null. The RSSVSetup class in the application does
not contain a primary key field, because each setup form is configured so that it always works with the only
record retrieved from the corresponding setup table. However, to support multitenant configurations, the setup
table should contain the CompanyID column as the primary key in the database. On the application level, this
CompanyID field is handled automatically by Acumatica Framework. For more information on the CompanyID
column in the database, see Multitenancy Support (CompanyID, CompanyMask) in the documentation.

Lesson Objectives

In this lesson, you will learn how to do the following:

• Create and use setup forms where users enter the configuration settings of the application
• Configure the auto-numbering of a field value

Step 2.1.1: Creating the Form—Self-Guided Exercise

In this step, you will create the Repair Work Order Preferences (RS101000) form on your own. Although this is a self-
guided exercise, you can use the details and suggestions in this topic as you create the form. The creation of a form
is described in detail in the T200 Maintenance Forms training course.

If you are using the Customization Project Editor to complete the self-guided exercise, you can follow this
instruction:

1. Create the form and graph as follows:

a. On the toolbar of the Customized Screens page of the Customization Project Editor, click Create New
Screen.

b. In the Create New Screen dialog box, which opens, specify the following values:

• Screen ID: RS.10.10.00
• Graph Name: RSSVSetupMaint

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d11c23-21f2-42a3-b17d-9637c9cf8031
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=d0945e20-1949-40b1-bd0f-92c7c432aa24

Part 2: Setup Form (Repair Work Order Preferences) | 52

• Graph Namespace: PhoneRepairShop
• Page Title: Repair Work Order Preferences
• Template: Form (FormView)

c. Move the generated RSSVSetupMaint graph to the extension library.

2. Create and configure the RSSVSetup DAC as specified below:

a. In Code Editor, generate the RSSVSetup DAC and move it to the extension library.

b. Configure the RSSVSetup DAC in Visual Studio as follows:

• Define attributes for the system fields. (For details about the definition of the attributes of the system
fields, see Step 1.4.2: Configure the Attributes of the New DAC in the T200 Maintenance Forms training
course or see Audit Fields, Concurrent Update Control (TStamp), and Attachment of Additional Objects to
Data Records (NoteID) in the documentation.)

• Define the attributes for the WalkInCustomerID field as shown below.

 #region WalkInCustomerID
 [CustomerActive(DisplayName = "Walk-In Customer", DescriptionField =
 typeof(Customer.acctName))]
 [PXDefault]
 public virtual int? WalkInCustomerID { get; set; }
 public abstract class walkInCustomerID :
 PX.Data.BQL.BqlInt.Field<walkInCustomerID> { }
 #endregion

The CustomerActive attribute is defined in the PX.Objects.AR namespace.
• Define the attributes for the DefaultEmployee field as follows.

 #region DefaultEmployee
 [Owner(DisplayName = "Default Employee")]
 [PXDefault]
 public virtual int? DefaultEmployee { get; set; }
 public abstract class defaultEmployee :
 PX.Data.BQL.BqlInt.Field<defaultEmployee> { }
 #endregion

The Owner attribute is defined in the PX.TM namespace.
• Define the attributes for the PrepaymentPercent field as shown in the following code.

 #region PrepaymentPercent
 [PXDBDecimal()]
 [PXDefault(TypeCode.Decimal, "0.0")]
 [PXUIField(DisplayName = "Prepayment Percent", Required = true)]
 public virtual Decimal? PrepaymentPercent { get; set; }
 public abstract class prepaymentPercent :
 PX.Data.BQL.BqlDecimal.Field<prepaymentPercent> { }
 #endregion

You will configure the attributes of the NumberingId field and the attributes of the
DAC further in this lesson.

3. Define a data view in the generated RSSVSetupMaint graph and make the Save and Cancel standard
system buttons available on the form toolbar as the following code shows.

 public class RSSVSetupMaint : PXGraph<RSSVSetupMaint>
 {

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=3adf5d92-c3d0-46cf-98b6-245a9d4de943
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=9dd06906-0b2f-498c-a333-cfd641bfbd9e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8d904e5f-2b8c-4d82-a8f5-bc863f8ffc8f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c5495c0-4705-4a38-8ea9-532b0ba1724a
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=2c5495c0-4705-4a38-8ea9-532b0ba1724a

Part 2: Setup Form (Repair Work Order Preferences) | 53

 public PXSave<RSSVSetup> Save;
 public PXCancel<RSSVSetup> Cancel;

 public SelectFrom<RSSVSetup>.View Setup;
 }

4. Build the project in Visual Studio and publish the customization project.

5. Configure the RS101000.aspx page as follows:

• Set the PrimaryView property value of the DataSource control to Setup.
• Set the DataMember property value of the header form to Setup.
• Do not configure controls on the form. You will create controls in Step 2.1.3: Configuring the Auto-

Numbering of Records (with CS.AutoNumberAttribute) further in this lesson.
6. Publish the customization project.

7. Include a link to the form in the Preferences group of the Phone Repair Shop workspace.

8. Update the SiteMapNode item for the Repair Work Order Preferences form in the customization project.

Step 2.1.2: Configuring the DAC for the Setup Form (with PXPrimaryGraph and
PXCacheName)

In this step, you will configure the RSSVSetup DAC with the PXPrimaryGraph and PXCacheName attributes,
which are necessary for the link to the setup form to be displayed when no setup data record exists (see the
screenshot below).

You use the PXPrimaryGraph attribute to specify the graph that corresponds to the default editing form for
records of the DAC. The attribute enables support for links to the Repair Work Order Preferences form from other
forms.

You use the PXCacheName attribute to specify a user-friendly name for a DAC. In particular, this name is used in an
error message that is displayed when no setup data records exist. Without the PXCacheName attribute, the error
message would use the DAC name, RSSVSetup, for the link.

Figure: The form when the setup data has not been specified

Configuring the RSSVSetup DAC

Perform the following steps to configure the RSSVSetup DAC:

1. In the RSSVSetup.cs file, add the PXPrimaryGraph attribute to the RSSVSetup DAC as shown in the
following code.

Part 2: Setup Form (Repair Work Order Preferences) | 54

 [PXPrimaryGraph(typeof(RSSVSetupMaint))]
 public class RSSVSetup : IBqlTable
 {
 ...
 }

2. Add the PXCacheName attribute to the RSSVSetup DAC as shown in the following code.

 [PXCacheName("Repair Work Order Preferences")]

3. Rebuild the project.

Related Links

• PXPrimaryGraphAttribute
• Configuration Parameters of the Application (Setup Forms)

Step 2.1.3: Configuring the Auto-Numbering of Records (with
CS.AutoNumberAttribute)

In this step, you will configure the auto-numbering of repair work orders.

Configuration of the Numbering Sequence Box on the Setup Form

The numbering sequences for the auto-numbering of records are defined on the Numbering Sequences (CS201000)
form. This form displays the data of the Numbering DAC from the PX.Objects.CS namespace. You will use this
DAC to configure the selector for the Numbering Sequence box on the Repair Work Order Preferences (RS101000)
form.

For the auto-numbering of repair work orders, you will use the WORKORDER numbering sequence, which has
been preconfigured for this course. You will set this numbering sequence as the default value for the Numbering
Sequence box. To display the Edit button to the right of the box, you will set AllowEdit to True for the control
that corresponds to the box. When a user clicks this button, the system opens the Numbering Sequences form,
where the user can view and possibly edit the settings of the numbering sequence.

The Attribute for the Auto-Numbering of Repair Work Orders

You will assign the AutoNumber attribute from PX.Objects.CS to the OrderNbr field of the
RSSVWorkOrder DAC. In the first parameter of the attribute constructor, you will pass the numbering sequence
that should be used to auto-number work orders.

Acumatica ERP includes a number of attributes derived from
PX.Objects.CS.AutoNumberAttribute. In your application, you can use a predefined
attribute that suits your needs or implement your own attribute, as described in Custom Attributes in
the documentation.

Changes in the Graph of the Data Entry Form

To make the RSSVWorkOrderEntry graph use the numbering sequence specified on the Repair Work Order
Preferences (RS101000) form, you will add a data view of the PXSetup type and the graph constructor to retrieve
setup data from the database. If the current record in this view is null, the server returns the specific error with the
link to the setup form. (Acumatica Framework defines the form based on the PXPrimaryGraph attribute on the
RSSVSetup DAC.)

https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=1dceb511-4e98-3700-7d7f-231688a7ac74
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=e8ee0bad-780a-4489-8dce-48395e6757f2
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d11c23-21f2-42a3-b17d-9637c9cf8031
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d11c23-21f2-42a3-b17d-9637c9cf8031
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c15d3d56-f7c8-4026-8e06-c72982635451

Part 2: Setup Form (Repair Work Order Preferences) | 55

Instead of checking the current record in the graph constructor, you can assign the
PXCheckCurrent attribute to the data view of the PXSetup type in the graph.

Instructions for Configuring the Auto-Numbering of Repair Work Orders

To set up the automatic numbering of repair work orders, complete the following steps:

1. In the RSSVSetup.cs file, configure the attributes of the NumberingID field as follows:

a. Specify the PXDBString and PXUIField attributes as follows.

 [PXDBString(10, IsUnicode = true)]
 [PXUIField(DisplayName = "Numbering Sequence")]

b. Add the using PX.Objects.CS; directive and define the selector for the field as shown in the
following code.

 [PXSelector(typeof(Numbering.numberingID),
 DescriptionField = typeof(Numbering.descr))]

c. Specify the WORKORDER numbering sequence as the default value for the field, as shown in the following
code.

 [PXDefault("WORKORDER")]

2. Build the project.

3. Edit ASPX of the Repair Work Order Preferences (RS101000) form in the Screen Editor or in Visual Studio as
follows:

a. Create controls for the NumberingID, WalkInCustomerID, DefaultEmployee, and
PrepaymentPercent fields of the Repair Work Order Preferences (RS101000) form.

b. Adjust the width of control labels and the control sizes by setting the properties of the first layout rule as
shown in the following code.

 <px:PXLayoutRule ControlSize="SM" LabelsWidth="SM"
 ID="PXLayoutRule1" runat="server" StartRow="True">
 </px:PXLayoutRule>

c. For the NumberingID control, specify the AllowEdit property as true to provide redirection to the
Numbering Sequences (CS201000) form.

4. In the RSSVWorkOrder.cs file, add the using PX.Objects.CS; directive and specify the
AutoNumber attribute for the OrderNbr field, as shown in the following code.

 #region OrderNbr
 [PXDBString(15, IsKey = true, IsUnicode = true, InputMask =
 ">CCCCCCCCCCCCCCC")]
 [PXDefault(PersistingCheck = PXPersistingCheck.NullOrBlank)]
 [PXUIField(DisplayName = "Order Nbr.", Visibility =
 PXUIVisibility.SelectorVisible)]
 [AutoNumber(typeof(RSSVSetup.numberingID), typeof(RSSVWorkOrder.dateCreated))]
 [PXSelector(typeof(Search<RSSVWorkOrder.orderNbr>))]
 public virtual string OrderNbr { get; set; }
 public abstract class orderNbr : PX.Data.BQL.BqlString.Field<orderNbr> { }
 #endregion

5. In the RSSVWorkOrderEntry graph, add the AutoNumSetup data view and the constructor as follows.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d11c23-21f2-42a3-b17d-9637c9cf8031

Part 2: Setup Form (Repair Work Order Preferences) | 56

 #region Views
 ...
 //The view for the auto-numbering of records
 public PXSetup<RSSVSetup> AutoNumSetup;
 #endregion

 #region Graph constructor
 public RSSVWorkOrderEntry()
 {
 RSSVSetup setup = AutoNumSetup.Current;
 }
 #endregion

6. Rebuild the project.

7. Publish the customization project.

Testing the Auto-Numbering

Do the following to test the auto-numbering:

1. Open the Repair Work Orders (RS301000) form and see the error displayed on the form, as the following
screenshot shows.

Figure: The form with the error

2. Click the link to open the Repair Work Order Preferences (RS101000) form.

3. On the form, make sure the WORKORDER numbering sequence is selected in the Numbering Sequence box,
and click the Edit button to the right of the box.

4. On the Numbering Sequences (CS201000) form, which opens for the WORKORDER numbering sequence, do
the following:

a. Type 000001 in the Last Number column. (You have already created a work order with number 000001
manually.)

b. Make sure the other settings of the sequence are the same as those shown in the screenshot below.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d11c23-21f2-42a3-b17d-9637c9cf8031

Part 2: Setup Form (Repair Work Order Preferences) | 57

Figure: The WORKORDER numbering sequence

c. Save your changes.

5. Close the Numbering Sequences form.

6. On the Repair Work Order Preferences form, specify the following settings and save your changes:

• Walk-in Customer: C000000001
• Default Employee: Becher, Joseph
• Prepayment Percent: 10

7. Open the Repair Work Orders form. Now the error is no longer displayed for the form, and you can create a
new record.

8. On the form toolbar, click Add New Record. Notice that the <NEW> placeholder appears in the Order Nbr.
box.

9. Specify the following settings for the new work order:

• Customer ID: C000000001
• Service: Screen Repair
• Device: iPhone 6
• Description: Screen repair, iPhone 6

10.Save your changes. Make sure the new repair work order has the 000002 order number assigned to it, as
shown in the following screenshot.

Part 2: Setup Form (Repair Work Order Preferences) | 58

Figure: A work order with automatically assigned number

Related Links

• Configuration Parameters of the Application (Setup Forms)

Lesson Summary

In this lesson, you have created a setup form and learned how to configure the auto-numbering of data records on
a data entry form.

To configure a link to the setup form (which is displayed when the configuration parameters are not specified), you
have assigned the PXPrimaryGraph and PXCacheName attributes to the RSSVSetup DAC.

To configure the auto-numbering of repair work order records, you have done the following:

• Added a box to the setup form that contains the numbering sequence to be used for the auto-numbering of
records

• Assigned the AutoNumber attribute from PX.Objects.CS to the field of the DAC for the data entry form
• Added the data view of the PXSetup type and the graph constructor that checks the current record in this

data view to the graph of the data entry form

The following diagram summarizes the implementation of automatic numbering.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=e8ee0bad-780a-4489-8dce-48395e6757f2

Part 2: Setup Form (Repair Work Order Preferences) | 59

Review Questions

1. Which of the following classes would you use to define the primary data view for a setup form?

a. PXSetup

b. SelectFrom<>.View

c. PXSave

2. In a database of a multitenant Acumatica ERP instance, what is the maximum number of records that the
database table that corresponds to the primary DAC of a setup form can contain?

a. 0

b. 1

c. A number that is equal to the number of tenants

d. Any number

Part 2: Setup Form (Repair Work Order Preferences) | 60

Answer Key

1. b

2. c

Additional Information: Custom Feature Switches

In this training course, you have created two custom forms. You may want to make custom forms available for a
user only if a custom feature is enabled on the Enable/Disable Features (CS100000) form. The creation of custom
feature switches is outside of the scope of this course but may be useful to some readers.

For details about custom feature switches, see To Add a Custom Feature Switch in the documentation.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c1555e43-1bc5-4f6f-ba9d-b323f94d8a6b
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8285172e-d3b1-48d9-bcc1-5d20e39cc3f0

Appendix: Use of Event Handlers | 61

Appendix: Use of Event Handlers

This topic lists the scenarios in which particular event handlers have been used in this course.

Table: Use of Event Handlers

Event Scenario Examples in the Guide

FieldDefault-
ing

Set a default value of a field depending on
other field values

Step 1.2.2: Updating Fields of the Same
Record on Update of a Field (with FieldUp-
dated and FieldDefaulting)—Self-Guided Ex-
ercise

FieldUpdated Update of a field of a data record when an-
other field of this record is updated

Step 1.2.2: Updating Fields of the Same
Record on Update of a Field (with FieldUp-
dated and FieldDefaulting)—Self-Guided Ex-
ercise

FieldVerifying Validation of an independent field value Step 1.3.1: Validating an Independent Field
Value (with FieldVerifying)

RowUpdated Insertion of detail lines when particular
fields of the master record are updated

Step 1.2.1: Creating a Work Order from a
Template (with RowUpdated)

RowUpdating Validation of a field value that depends on
another field of the same record

Step 1.3.2: Validating Dependent Fields of
Records (with RowUpdating)

Appendix: Reference Implementation | 62

Appendix: Reference Implementation

You can find the reference implementation of the customization described in this course in the Customization
\T220 folder of the Help-and-Training-Examples repository in Acumatica GitHub.

https://github.com/Acumatica/Help-and-Training-Examples

Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course | 63

Appendix: Deploying the Needed Acumatica ERP Instance
for the Training Course

If for some reason you cannot complete the instructions in Step 2: Preparing the Needed Acumatica
ERP Instance for the Training Course, you can create an Acumatica ERP instance as described in this
topic and manually publish the needed customization project as described in Appendix: Publishing the
Required Customization Project.

You deploy an Acumatica ERP instance and configure it as follows:

1. To deploy a new application instance, open the Acumatica ERP Configuration Wizard, and do the following:

a. On the Database Configuration page, type the name of the database: PhoneRepairShop.

b. On the Tenant Setup page, set up a tenant with the I100 data inserted by specifying the following
settings:

• Login Tenant Name: MyTenant
• New: Selected
• Insert Data: I100
• Parent Tenant ID: 1
• Visible: Selected

c. On the Instance Configuration page, in the Local Path of the Instance box, select a folder that is
outside of the C:\Program Files (x86) or C:\Program Files folder. We recommend that
you store the website folder outside of these folders to avoid an issue with permission to work in these
folders when you perform customization of the website.

The system creates a new Acumatica ERP instance, adds a new tenant, and loads the selected data to it.

2. Sign in to the new tenant by using the following credentials:

• Username: admin
• Password: setup
Change the password when the system prompts you to do so.

3. In the top right corner of the Acumatica ERP screen, click the username and then click My Profile. On the
General Info tab of the User Profile (SM203010) form, which the system has opened, select YOGIFON in the
Default Branch box; then click Save on the form toolbar.

In subsequent sign-ins to this account, you will be signed in to this branch.

4. Optional: Add the Customization Projects (SM204505) and Generic Inquiry (SM208000) forms to your favorites.
For details about how to add a form to favorites, see Managing Favorites: General Information.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ec5534a-8fe8-4b8d-83d2-721d9c2d5864

Appendix: Publishing the Required Customization Project | 64

Appendix: Publishing the Required Customization Project

If for some reason you cannot complete the instructions in Step 2: Preparing the Needed Acumatica
ERP Instance for the Training Course, you can create an Acumatica ERP instance as described in
Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course and manually publish
the needed customization project as described in this topic.

Load the customization project with the results of the T210 Customized Forms and Master-Detail Relationship
training course and publish this project as follows:

1. On the Customization Projects (SM204505) form, create a project with the name PhoneRepairShop, and
open it.

2. In the menu of the Customization Project Editor, click Source Control > Open Project from Folder.

3. In the dialog box that opens, specify the path to the Customization\T210\PhoneRepairShop folder,
which you have downloaded from Acumatica GitHub, and click OK.

4. Bind the customization project to the source code of the extension library as follows:

a. Copy the Customization\T210\PhoneRepairShop_Code folder to the App_Data\Projects
folder of the website.

By default, the system uses the App_Data\Projects folder of the website as the parent
folder for the solution projects of extension libraries.

If the website folder is outside of the C:\Program Files (x86) and C:\Program
Files folders, we recommend that you use the App_Data\Projects folder for the
project of the extension library.

b. Open the solution, and build the PhoneRepairShop_Code project.

c. Reload the Customization Project Editor.

d. In the menu of the Customization Project Editor, click Extension Library > Bind to Existing.

e. In the dialog box that opens, specify the path to the App_Data\Projects
\PhoneRepairShop_Code folder, and click OK.

5. In the menu of the Customization Project Editor, click Publish > Publish Current Project.

The Modified Files Detected dialog box opens before publication because you have rebuilt
the extension library in the PhoneRepairShop_Code Visual Studio project. The Bin
\PhoneRepairShop_Code.dll file has been modified and you need to update it in the
project before the publication.

The published customization project contains all changes to the Acumatica ERP website and database that have
been performed in the T200 Maintenance Forms and T210 Customized Forms and Master-Detail Relationship training
courses. This project also contains the customization plug-ins that fill in the tables created in the T200 Maintenance
Forms and T210 Customized Forms and Master-Detail Relationship training courses with the custom data entered in
these training courses. For details about the customization plug-ins, see To Add a Customization Plug-In to a Project.
Creation of customization plug-ins is outside of the scope of this course.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c69443fe-4d32-47a9-85aa-b2882aa259ef

	Contents
	Copyright
	Introduction
	How to Use This Course
	Course Prerequisites
	Initial Configuration
	Step 1: Preparing the Environment
	Step 2: Preparing the Needed Acumatica ERP Instance for the Training Course
	Step 3: Creating the Database Tables

	Company Story and Customization Description
	Part 1: Data Entry Form (Repair Work Orders)
	Lesson 1.1: Configuring a Complex Form Layout
	Step 1.1.1: Creating the Form—Self-Guided Exercise
	Step 1.1.2: Configuring the Controls of the Summary Area
	Step 1.1.3: Configuring the Layout of the Summary Area of the Form
	Step 1.1.4: Configuring Form View Mode for the Grid
	Step 1.1.5: Adding the Substitute Form with a Shared Filter to the Project
	Lesson Summary
	Review Questions
	Additional Information: Configuration of Controls
	Additional Information: Layout Configuration

	Lesson 1.2: Copying Field Values from One Record to Another
	Step 1.2.1: Creating a Work Order from a Template (with RowUpdated)
	Step 1.2.2: Updating Fields of the Same Record on Update of a Field (with FieldUpdated and FieldDefaulting)—Self-Guided Exercise
	Lesson Summary
	Review Question

	Lesson 1.3: Validating the Field Values
	Step 1.3.1: Validating an Independent Field Value (with FieldVerifying)
	Step 1.3.2: Validating Dependent Fields of Records (with RowUpdating)
	Lesson Summary
	Review Questions

	Part 2: Setup Form (Repair Work Order Preferences)
	Lesson 2.1: Configuring the Auto-Numbering of a Field Value
	Step 2.1.1: Creating the Form—Self-Guided Exercise
	Step 2.1.2: Configuring the DAC for the Setup Form (with PXPrimaryGraph and PXCacheName)
	Step 2.1.3: Configuring the Auto-Numbering of Records (with CS.AutoNumberAttribute)
	Lesson Summary
	Review Questions
	Additional Information: Custom Feature Switches

	Appendix: Use of Event Handlers
	Appendix: Reference Implementation
	Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course
	Appendix: Publishing the Required Customization Project

