
Developer Course

Customization

T240 Processing Forms
2022 R1

Revision: 4/20/2022

Contents | 2

Contents

Copyright...4

Introduction...5

How to Use This Course.. 6

Course Prerequisites...7

Initial Configuration... 8

Step 1: Preparing the Environment.. 8

Step 2: Preparing the Needed Acumatica ERP Instance for the Training Course... 8

Step 3: Creating the Database Table.. 9

Company Story and Customization Description...10

Part 1: Processing Form (Assign Work Orders).. 12

Lesson 1.1: Creating a Simple Processing Form.. 12

Step 1.1.1: Creating the Form—Self-Guided Exercise... 13

Step 1.1.2: Changing the Processing Action..13

Step 1.1.3: Configuring the Processing Graph and Data View (with PXProcessing and
RowSelected).. 16

Step 1.1.4: Creating Controls for the Processing Form...18

Step 1.1.5: Testing the Processing Form... 19

Lesson Summary.. 22

Review Questions... 23

Additional Information: Processing Dialog Box.. 24

Additional Information: Parallel Processing... 24

Lesson 1.2: Adding Filtering Parameters to the Processing Form...24

Step 1.2.1: Extending the DAC with a New Field (Using PXDBCalced)... 25

Step 1.2.2: Defining the Filter DAC...26

Step 1.2.3: Defining the Data Views (with PXFilter and PXFilteredProcessing)................................... 27

Step 1.2.4: Adjusting the ASPX Page (with SyncPosition and AutoRefresh).. 29

Step 1.2.5: Testing the Filter.. 30

Lesson Summary.. 32

Review Questions... 33

Part 2: Update of Data with a Custom Accumulator Attribute... 35

Lesson 2.1: Implementing a Custom PXAccumulator Attribute.. 35

Step 2.1.1: Preparing the Data... 35

Step 2.1.2: Creating a DAC—Self-Guided Exercise.. 36

Step 2.1.3: Implementing the Accumulator Attribute...36

Contents | 3

Lesson Summary.. 39

Review Questions... 39

Lesson 2.2: Modifying the Processing Form to Use the Field Updated by PXAccumulator..........................40

Step 2.2.1: Extending the DAC with New Fields.. 41

Step 2.2.2: Replacing Field Attributes (with PXDBScalar and PXUnboundDefault in
CacheAttached)...43

Step 2.2.3: Modifying the Assignment and Completion Operations..44

Step 2.2.4: Defining the External Presentation of Field Values (in FieldSelecting)..............................45

Step 2.2.5: Adjusting the ASPX Page—Self-Guided Exercise...46

Step 2.2.6: Testing the Processing Form and the Accumulator Attribute.. 47

Lesson Summary.. 49

Review Questions... 50

Part 3: Redirection to a Report at the End of Processing.. 51

Lesson 3.1: Adding Redirection to a Report at the End of Processing.. 51

Step 3.1.1: Including a Report in the Customization Project... 52

Step 3.1.2: Adding Redirection to a Report...53

Step 3.1.3: Testing the Redirection to the Report...54

Lesson Summary.. 55

Review Questions... 56

Appendix: Use of Event Handlers... 58

Appendix: Reference Implementation.. 59

Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course..................................... 60

Appendix: Publishing the Required Customization Project... 61

Copyright | 4

Copyright

© 2022 Acumatica, Inc.

ALL RIGHTS RESERVED.

No part of this document may be reproduced, copied, or transmitted without the express prior consent of
Acumatica, Inc.

3933 Lake Washington Blvd NE, # 350, Kirkland, WA 98033

Restricted Rights

The product is provided with restricted rights. Use, duplication, or disclosure by the United States Government is
subject to restrictions as set forth in the applicable License and Services Agreement and in subparagraph (c)(1)(ii)
of the Rights in Technical Data and Computer Soware clause at DFARS 252.227-7013 or subparagraphs (c)(1) and
(c)(2) of the Commercial Computer Soware-Restricted Rights at 48 CFR 52.227-19, as applicable.

Disclaimer

Acumatica, Inc. makes no representations or warranties with respect to the contents or use of this document, and
specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose.
Further, Acumatica, Inc. reserves the right to revise this document and make changes in its content at any time,
without obligation to notify any person or entity of such revisions or changes.

Trademarks

Acumatica is a registered trademark of Acumatica, Inc. HubSpot is a registered trademark of HubSpot, Inc.
Microso Exchange and Microso Exchange Server are registered trademarks of Microso Corporation. All other
product names and services herein are trademarks or service marks of their respective companies.

Soware Version: 2022 R1

Last Updated: 04/20/2022

Introduction | 5

Introduction

The T240 Processing Forms training course teaches you how you can create processing forms by using Acumatica
Framework and the customization tools of Acumatica ERP. A processing form is a form on which users can invoke
an operation on multiple selected records at once.

This course is intended for application developers who are starting to learn how to customize Acumatica ERP.

The course is based on a set of examples that demonstrate the general approach to customizing Acumatica ERP. It
is designed to give you ideas about how to develop your own embedded applications through the customization
tools. As you go through the course, you will continue the development of the customization for the cell phone
repair shop, which was performed in the previous training courses of the T series (which we recommend that you
take before completing the current course).

Aer you complete all the lessons of the course, you will be familiar with the programming techniques used to
define Acumatica ERP processing forms.

We recommend that you complete the examples in the order in which they are provided in the course,
because some examples use the results of previous ones.

How to Use This Course | 6

How to Use This Course

To complete this course, you will complete the lessons from each part of the course in the order in which they are
presented and then pass the assessment test. More specifically, you will do the following:

1. Complete the Course Prerequisites, perform the Initial Configuration, and carefully read the Company Story
and Customization Description.

2. Complete the lessons in all parts of the training guide.

3. In Partner University, take T240 Certification Test: Processing Forms.

Aer you pass the certification test, you will receive the Partner University certificate of course completion.

What Is in a Part?

The first part of the course explains how to create two types of processing forms: a form without filtering
parameters, and a form with filtering parameters.

The second part of the course shows how to implement the update of the frequently edited fields (by using a
custom PXAccumulator attribute) and use these fields on a processing form.

The third part of the course shows the implementation of redirection to a report at the end of processing.

Each part of the course consists of lessons you should complete.

What Is in a Lesson?

Each lesson is dedicated to a particular development scenario that you can implement by using Acumatica ERP
customization tools and Acumatica Framework. Each lesson consists of a brief description of the scenario and an
example of the implementation of this scenario.

The lesson may also include Additional Information topics, which are outside of the scope of this course but may be
useful to some readers.

Each lesson ends with a Lesson Summary topic, which summarizes the development techniques used during the
implementation of the scenario.

What Are the Documentation Resources?

The complete Acumatica ERP and Acumatica Framework documentation is available on https://help.acumatica.com/
and is included in the Acumatica ERP instance. While viewing any form used in the course, you can click the Open
Help button in the top pane of the Acumatica ERP screen to bring up a form-specific Help menu; you can use the
links on this menu to quickly access form-related information and activities and to open a reference topic with
detailed descriptions of the form elements.

Licensing Information

For the educational purposes of this course, you use Acumatica ERP under the trial license, which does not require
activation and provides all available features. For the production use of the Acumatica ERP functionality, an
administrator has to activate the license the organization has purchased. Each particular feature may be subject to
additional licensing; please consult the Acumatica ERP sales policy for details.

https://help.acumatica.com/

Course Prerequisites | 7

Course Prerequisites

To complete this course, you should be familiar with the basic concepts of Acumatica Framework and Acumatica
Customization Platform. Before you begin this course, we recommend that you complete the following training
courses:

• T200 Maintenance Forms
• T210 Customized Forms and Master-Detail Relationship
• T220 Data Entry and Setup Forms
• T230 Actions
• T270 Workflow API

Required Knowledge and Background

To complete the course successfully, you should have the following required knowledge:

• Proficiency with C#, including but not limited to the following features of the language:
• Class structure
• OOP (inheritance, interfaces, and polymorphism)
• Usage and creation of attributes
• Generics
• Delegates, anonymous methods, and lambda expressions

• Knowledge of the following main concepts of ASP.NET and web development:
• Application states
• The debugging of ASP.NET applications by using Visual Studio
• The process of attaching to IIS by using Visual Studio debugging tools
• Client- and server-side development
• The structure of web forms

• Experience with SQL Server, including doing the following:
• Writing and debugging complex SQL queries (WHERE clauses, aggregates, and subqueries)
• Understanding the database structure (primary keys, data types, and denormalization)

• The following experience with IIS:
• The configuration and deployment of ASP.NET websites
• The configuration and securing of IIS

Initial Configuration | 8

Initial Configuration

You need to perform the prerequisite actions described in this part before you start to complete the course.

Step 1: Preparing the Environment

If you have completed any of the training courses of the T series and are using the same environment
for the current course, you can skip this step.

You should prepare the environment for the training course as follows:

1. Make sure the environment that you are going to use for the training course conforms to the System
Requirements for Acumatica ERP 2022 R1.

2. Make sure that the Web Server (IIS) features that are listed in Configuring Web Server (IIS) Features are
turned on.

3. Install the Acuminator extension for Visual Studio.

4. Clone or download the customization project and the source code of the extension library from the Help-
and-Training-Examples repository in Acumatica GitHub to a folder on your computer.

5. Install Acumatica ERP. On the Main Soware Configuration page of the installation program, select the
Install Acumatica ERP and Install Debugger Tools check boxes.

If you have already installed Acumatica ERP without debugger tools, you should remove
Acumatica ERP and install it again with the Install Debugger Tools check box selected. The
reinstallation of Acumatica ERP does not affect existing Acumatica ERP instances. For details,
see To Install the Acumatica ERP Tools.

Step 2: Preparing the Needed Acumatica ERP Instance for the Training Course

You deploy an Acumatica ERP instance and configure it as follows:

1. Open the Acumatica ERP Configuration Wizard, and do the following:

a. Click Deploy New Application Instance for T-series Developer Courses.

b. On the Database Configuration page, make sure the name of the database is PhoneRepairShop.

c. On the Instance Configuration page, do the following:

a. In the Local Path of the Instance box, select a folder that is outside of the C:\Program Files
(x86) and C:\Program Files folders. (We recommend that you store the website folder
outside of these folders to avoid an issue with permission to work in these folders when you perform
customization of the website.)

b. In the Training Course box, select the training course you are taking.

The system creates a new Acumatica ERP instance, adds a new tenant, loads the data to it, and publishes
the customization project that is needed for this training course.

2. Make sure a Visual Studio solution is available in the App_Data\Projects\PhoneRepairShop folder
of the Acumatica ERP instance folder. This is the solution of the extension library that you will modify in this
course.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d5d39d-513a-4f93-b484-a95eb33103a1
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a8d5d39d-513a-4f93-b484-a95eb33103a1
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8ed6a834-e49d-4e9a-9f44-2ce4df048983
https://github.com/Acumatica/Help-and-Training-Examples
https://github.com/Acumatica/Help-and-Training-Examples
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=6b8a047e-4a7c-435f-b30c-265509560a70

Initial Configuration | 9

3. Sign in to the new tenant by using the following credentials:

• Username: admin
• Password: setup
Change the password when the system prompts you to do so.

4. In the top right corner of the Acumatica ERP screen, click the username, and then click My Profile. The User
Profile (SM203010) form opens. On the General Info tab, select YOGIFON in the Default Branch box; then
click Save on the form toolbar.

In subsequent sign-ins to this account, you will be signed in to this branch.

5. Optional: Add the Customization Projects (SM204505) and Generic Inquiry (SM208000) forms to your favorites.
For details about how to add a form to your favorites, see Managing Favorites: General Information.

If for some reason you cannot complete instructions in this step, you can create an Acumatica ERP
instance as described in Appendix: Deploying the Needed Acumatica ERP Instance for the Training
Course and manually publish the needed customization project as described in Appendix: Publishing
the Required Customization Project.

Step 3: Creating the Database Table

Create the database table that is necessary for the T240 Processing Forms training course and include the script for
table creation in the customization project as follows:

1. In SQL Server Management Studio, execute the T240_DatabaseTables.sql script to create the
database tables that are necessary for the T240 Processing Forms training course.

This script creates the RSSVEmployeeWorkOrderQty table, which is new for this course.

2. On the Database Scripts page of the Customization Project Editor, for the added table, do the following:

a. On the page toolbar, click Add Custom Table Schema.

b. In the dialog box that opens, select the table and click OK.

3. Publish the project.

The design of database tables is outside of the scope of this course. For details on designing database
tables for Acumatica ERP, see Designing the Database Structure and DACs.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ec5534a-8fe8-4b8d-83d2-721d9c2d5864
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5659adfe-3e4a-45a6-a94a-a33c2f955194

Company Story and Customization Description | 10

Company Story and Customization Description

In this course, you will continue the development to support the cell phone repair shop of the Smart Fix company;
you began this development while completing the previous training courses of the T series.

You have loaded and published the customization project with the results of these courses as
described in Initial Configuration.

In the previous training courses of the T series, you have created the following forms:

• The Repair Services (RS201000) custom maintenance form, which the Smart Fix company uses to manage
the lists of repair services that the company provides

• The Serviced Devices (RS202000) custom maintenance form, which the Smart Fix company uses to manage
the lists of devices that can be serviced

• The Services and Prices (RS203000) custom maintenance form, which provides users with the ability to
define and maintain the price for each provided repair service

• The Repair Work Orders (RS301000) custom data entry form, which is used to create and manage work
orders for repairs

• The Repair Work Order Preferences (RS101000) custom setup form, which an administrative user uses to
specify the company's preferences for the repair work orders

In the previous training courses of the T series, you have also customized the Stock Items (IN202500) form to mark
particular stock items as repair items—that is, items that are used for the repair services.

In this course, you will create the Assign Work Orders (RS501000) custom processing form, which users will use to
assign multiple repair work orders at the same time. You will implement the functionality of the form in stages.
First, you will implement this form as a simple processing form without any filtering parameters for user selection.
Then you will add a filter to the form so that only the records that satisfy the filtering parameters are displayed in
the table. Also, you will implement the selection of the default assignee, which depends on the number of already
assigned work orders for the employees. You will use a custom PXAccumulator attribute to update the number
of assigned orders in the database for each employee. Finally, you will implement redirection to a report at the end
of the processing.

Assign Work Orders Form

The following screenshot shows how the Assign Work Orders (RS301000) form will look at the end of the course.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=77786a70-1f1e-4d63-ad98-96f98e4fcb0e

Company Story and Customization Description | 11

Figure: Assign Work Orders form

The form will contain the following elements:
• Two processing buttons on the toolbar: Assign and Assign All, which a user will use to assign only the

selected work orders (that is, those for which the user has selected the unlabeled check boxes) or all of the
listed work orders, respectively, in the table.

• The filtering UI elements in the Summary area, which a user can use to filter the list of repair work orders by
the priority, the number of days the work order is not assigned, or the service that should be provided.

• The table that displays the list of work orders that have the Ready for Assignment status and meet the
other filtering criteria specified. Each row of the table lists a work order along with additional information
about it, such as the number of days the order has been unassigned, the assignee to which the order will
be assigned, and the number of orders that this assignee is currently is working on. A user can change the
assignee for any work order in the table.

This form will use the following custom tables:

• RSSVWorkOrder: The data of this table will be displayed in the table on the form. The table has been
added to the application database in Step 2: Preparing the Needed Acumatica ERP Instance for the Training
Course.

• RSSVEmployeeWorkOrderQty: The data of this table will be used to display the number of assigned
work orders of an employee in the table on the form. The table has been added to the application database
in Step 3: Creating the Database Table.

The filtering elements in the Summary area will use the RSSVWorkOrderToAssignFilter DAC, which
contains only unbound fields. Therefore, no table corresponds to this DAC in the database.

Part 1: Processing Form (Assign Work Orders) | 12

Part 1: Processing Form (Assign Work Orders)

The Smart Fix company needs to have a custom Acumatica ERP form that the managers of the company will use
to assign repair work orders to particular employees. For this purpose, in this part of the course, you will create
the Assign Work Orders (RS501000) processing form, which is described in Company Story and Customization
Description.

On a processing form, users can invoke an operation on multiple selected records at once. For instance, a
processing operation can be a procedure that modifies the status of documents.

Processing forms have IDs that start with a two-letter abbreviation (indicating the functional area of the form)
followed by 50 (indicating a processing form), such as RS501000. The names of the graphs that work with
processing forms have the Process suffix. For instance, RSSVAssignProcess will be the name of the graph for
the Assign Work Orders form. For details about the naming conventions for the ASPX pages and graphs, see Form
and Report Numbering and Graph Naming.

Aer you complete the lessons of this part, you will be able to test the functionality of the form you have created.

Lesson 1.1: Creating a Simple Processing Form

In this lesson, you will create a simple processing form that displays the records to be processed and does not have
any filtering parameters. You will create the Assign Work Orders (RS501000) custom processing form, which you will
modify for expanded functionality in future lessons.

In a table, the form will display the repair work orders that have the Ready for Assignment status. To give users the
ability to process these work orders, the form will have two buttons on the toolbar (Assign and Assign All). The
processing operation will change the status of each processed work order to Assigned and assign the work order
to the employee specified in the Assignee column, if one has been specified. For the work orders for which no
assignee has been specified, the default employee defined on the Repair Work Order Preferences (RS101000) form
is inserted as the assignee of the work order. (The default assignee has been specified on the Repair Work Order
Preferences form in the T220 Data Entry and Setup Forms training course.) As the processing operation, you will use
the Assign action that you published with the customization package in Initial Configuration.

At the end of the lesson, the form will look as shown in the following screenshot.

Figure: Assign Work Orders form

Lesson Objectives

In this lesson, you will learn how to create a simple processing form (that is, one that does not have any filtering
parameters defined).

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4a5e6db8-cbba-4cbe-b0f1-1d774381c1b4
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4a5e6db8-cbba-4cbe-b0f1-1d774381c1b4
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=100693b9-cf45-47aa-a653-24e03f7a93e8

Part 1: Processing Form (Assign Work Orders) | 13

Step 1.1.1: Creating the Form—Self-Guided Exercise

In this step, you will create the Assign Work Orders (RS501000) form on your own. Although this is a self-guided
exercise, this topic provides details and suggestions you can use as you create the form. The creation of a form is
described in detail in the T200 Maintenance Forms training course.

If you are using the Customization Project Editor to complete the self-guided exercise, you can follow this
instruction:

1. Create the form and graph as follows:

a. On the toolbar of the Customized Screens page of the Customization Project Editor, click Create New
Screen.

b. In the Create New Screen dialog box which opens, specify the following values:

• Screen ID: RS.50.10.00
• Graph Name: RSSVAssignProcess
• Graph Namespace: PhoneRepairShop
• Page Title: Assign Work Orders
• Template: Grid (GridView)

c. Move the generated RSSVAssignProcess graph to the extension library.

2. Make sure that the RSSVWorkOrder DAC is defined in the PhoneRepairShop_Code Visual Studio
project.

3. Do not make any standard system actions available during the initial definition of the
RSSVAssignProcess graph. You will define the actions in Step 1.1.3: Configuring the Processing Graph
and Data View (with PXProcessing and RowSelected).

4. Do not define any data views of the RSSVAssignProcess graph at this time. You will define the data view
in Step 1.1.3: Configuring the Processing Graph and Data View (with PXProcessing and RowSelected).

5. Build the project in Visual Studio.

6. Update the customization project with a new version of the PhoneRepairShop_Code.dll and publish
the customization project.

7. Include a link to the Assign Work Orders form in the Processes category of the Phone Repair Shop
workspace.

8. Update the SiteMapNode item for the Assign Work Orders form in the customization project.

Step 1.1.2: Changing the Processing Action

In this step, you will modify the Assign action of the Repair Work Orders (RS301000) form, which assigns a repair
work order to an employee and changes the status of the order to Assigned. You will make the following changes
to this action so that it can be also used on the Assign Work Orders (RS501000) processing form (the way the action
works on the Repair Work Orders form will not be modified):

• You will modify the assign() action handler as follows:
• You will move the code from the assign() action handler to the separate AssignOrders() static

method.
• You will change the signature of the action handler so that it returns IEnumerable. If you use the void

action handler instead, the processing of the long-running operation and its result will not be displayed
in the UI.

Part 1: Processing Form (Assign Work Orders) | 14

• You will replace the PXButton attribute with the PXProcessButton attribute to indicate that the
action will be used on the processing form.

• To run the AssignOrders() processing method within the assign() action handler, you will invoke
the PXLongOperation.StartOperation() method, which starts execution of the processing
method in a separate thread. The use of the PXLongOperation.StartOperation() method is the
only way to execute the processing method asynchronously in Acumatica Framework.
Before you run the operation, you invoke the Save.Press() method to save the last changes made on
the data entry page, to be sure to process the latest version of the work order.

You need to call Save.Press() instead of Actions.PressSave() in an action that is
used in a workflow and starts a long-running operation.

• In the separate AssignOrders() static method, you will do the following changes to the code of the
action:
• You will modify the code so that it works with the list of repair work orders obtained from the input

parameter of the method.
• You will add the isMassProcess parameter to the AssignOrders() method. If isMassProcess

= true is passed in the method parameters (which means that the method is invoked from a
processing form), you will return a successful processing message to the UI by using the static
PXProcessing.SetInfo() method.

• To handle errors that might occur during the processing, you will enclose the processing
code in the try statement. If any error occurs, in the catch statement, by using the static
PXProcessing<T>.SetError() method, you will return the processing result for each repair work
order to the UI.

Changing the Assign Action

Make the changes to the action as follows:

1. In the Messages class, add the following string. This message will be returned to the UI aer the successful
processing of each work order on a processing form.

 public const string WorkOrderAssigned =
 "The {0} work order has been successfully assigned.";

2. In the RSSVWorkOrderEntry graph, define the AssignOrders() static method as follows.

 public static void AssignOrders(List<RSSVWorkOrder> list,
 bool isMassProcess = false)
 {
 var workOrderEntry = PXGraph.CreateInstance<RSSVWorkOrderEntry>();
 for (int i = 0; i < list.Count; i++)
 {
 if (list[i] == null)
 continue;

 RSSVWorkOrder workOrder = list[i];
 try
 {
 workOrderEntry.Clear();
 workOrderEntry.WorkOrders.Current = workOrder;
 //If the assignee is not specified,
 //specify the default employee.
 if (workOrder.Assignee == null)
 {
 //Retrieve the record with the default setting

Part 1: Processing Form (Assign Work Orders) | 15

 RSSVSetup setupRecord =
 workOrderEntry.AutoNumSetup.Current;
 workOrder.Assignee = setupRecord.DefaultEmployee;
 }

 //Update the work order in the cache.
 workOrderEntry.WorkOrders.Update(workOrder);

 //Trigger the Save action to save the changes
 //to the database
 workOrderEntry.Actions.PressSave();

 //Display the message to indicate successful processing.
 if (isMassProcess)
 {
 PXProcessing<RSSVWorkOrder>.SetInfo(i,
 string.Format(Messages.WorkOrderAssigned,
 workOrder.OrderNbr));
 }
 }
 catch (Exception e)
 {
 PXProcessing<RSSVWorkOrder>.SetError(i, e);
 }
 }
 }

3. Invoke the AssignOrders() method in the action handler for the Assign action of the
RSSVWorkOrderEntry graph as follows.

 public PXAction<RSSVWorkOrder> Assign;
 [PXProcessButton]
 [PXUIField(DisplayName = "Assign")]
 protected virtual IEnumerable assign(PXAdapter adapter)
 {
 bool isMassProcess = adapter.MassProcess;
 // Populate a local list variable.
 List<RSSVWorkOrder> list = new List<RSSVWorkOrder>();
 foreach (RSSVWorkOrder order in adapter.Get<RSSVWorkOrder>())
 {
 list.Add(order);
 }
 // Trigger the Save action to save changes in the database.
 Save.Press();

 PXLongOperation.StartOperation(this, delegate ()
 {
 AssignOrders(list, isMassProcess);
 });

 // Return the local list variable.
 return list;
 }

4. Rebuild the project.

Part 1: Processing Form (Assign Work Orders) | 16

Testing the Modified Action

The modified action will work with both the Repair Work Orders (RS301000) form and the Assign Work Orders
(RS501000). You have not yet added the action to the RSSVAssignProcess graph, which works with the Assign
Work Orders form, so that form cannot be tested yet. You can, however, make sure that the modified Assign action
on the Repair Work Orders form works correctly. Proceed as follows:

1. On the Repair Work Orders form, create a new work order with the following settings:

• Customer ID: C000000001
• Service: Battery Replacement
• Device: Nokia 3310
• Description: Battery replacement, Nokia 3310

2. Save the work order.

3. On the form toolbar, click Remove Hold and make sure the work order has the Ready for Assignment status.

4. On the form toolbar, click Assign. Make sure the work order has the Assigned status and the Assignee box
is not empty, as shown in the following screenshot. If assignee is not specified in the repair work order,
the system fills in the value specified in the Default Assignee box on the Repair Work Order Preferences
(RS101000) form.

Figure: Assigned work order

Related Links

• PXProcessing.SetInfo Method
• PXLongOperation.StartOperation Method
• Asynchronous Execution
• PXProcessButtonAttribute Class

Step 1.1.3: Configuring the Processing Graph and Data View (with PXProcessing and
RowSelected)

In this step, you will configure the RSSVAssignProcess graph that works with the Assign Work Orders
(RS501000) form to be a processing graph as follows:

https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=cc44ea94-0a05-6cce-4832-1378c7276a19
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=e0d9f3b1-7299-3ed2-0216-f1d02d23d2e2
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=3e8c46fa-54a8-4f9c-9353-aa559c346215
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=6011f104-56a5-2bf8-ba17-4a394831c635

Part 1: Processing Form (Assign Work Orders) | 17

• You will define the data view for the Assign Work Orders form.
To define the data view for the processing form, you will use the PXProcessing<Table,Where> class.
This class is derived from the PXProcessingBase<Table> class, which is a base class for the data views
of processing forms. Inside the Where condition of PXProcessing<Table,Where>, you will use a
fluent BQL statement that selects only the repair work orders with the Ready for Assignment status.

• You will add this data view and the processing actions to the RSSVAssignProcess graph.
The processing form will have one system action (Cancel) and two custom processing actions
(Assign and Assign All). By default, any form that has a data view of a type derived from
PXProcessingBase<Table> has the Process and Process All buttons on the form toolbar. You will
replace the names of the default buttons to Assign and Assign All in the graph constructor. To override the
button captions, you will use the SetProcessCaption() and SetProcessAllCaption() methods.

• You will specify the workflow action to be used for processing.
In the RowSelected event handler, you will specify the workflow action that the processing form should
use for processing. You will invoke the SetProcessWorkflowAction<>() method of the data view.

• We recommend that you do not call the SetProcessWorkflowAction<>() method in
the graph constructor because this can cause incorrect initialization of the workflow.

• For the forms that do not use workflow actions for processing, you must specify the
processing delegate by using the SetProcessDelegate() method. For details about
processing delegates, see Implementation of Processing Operations.

• You will modify the action definition in the workflow so that the action can be used on the processing form.
In the action definition in the workflow, you will call the MassProcessingScreen<>() method with
the RSSVAssignProcess graph as the type parameter. You will also call the InBatchMode() method
because the Assign action works with the list of records.

Configuring the RSSVAssignProcess Graph

Do the following:

1. In the RSSVAssignProcess.cs file, add the following using directive.

using PhoneRepairShop.Workflows;

2. In the RSSVAssignProcess graph, use the following code to define the Cancel action for the toolbar
and the WorkOrders data view that provides data records to be processed on the form.

 public class RSSVAssignProcess : PXGraph<RSSVAssignProcess>
 {
 public PXCancel<RSSVWorkOrder> Cancel;
 public PXProcessing<RSSVWorkOrder,
 Where<RSSVWorkOrder.status.IsEqual<
 RSSVWorkOrderWorkflow.States.readyForAssignment>>> WorkOrders; }

3. In the RSSVAssignProcess graph, define the constructor of the graph as follows.

 public RSSVAssignProcess()
 {
 WorkOrders.SetProcessCaption("Assign");
 WorkOrders.SetProcessAllCaption("Assign All");
 }

4. In the RSSVAssignProcess graph, define the following RowSelected event handler.

 protected virtual void _(Events.RowSelected<RSSVWorkOrder> e)
 {

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=731abdaa-c97b-4d00-ba94-54840e4d173f

Part 1: Processing Form (Assign Work Orders) | 18

 WorkOrders.SetProcessWorkflowAction<RSSVWorkOrderEntry>(
 g => g.Assign);
 }

5. In the RSSVWorkOrderWorkflow class, in the lambda expression for the WithActions method,
modify the Assign action definition as follows.

 actions.Add(g => g.Assign,
 c => c.WithCategory(
 processingCategory, g => g.PutOnHold)
 .MassProcessingScreen<RSSVAssignProcess>()
 .InBatchMode());

6. Rebuild the project.

Related Links

• PXProcessing<Table> Class
• PXProcessing<Table,Where> Class

Step 1.1.4: Creating Controls for the Processing Form

In this step, you will create controls for the Assign Work Orders (RS501000) processing form.

You will add the unbound Selected data field of the Boolean type to the RSSVWorkOrder DAC and then add
the column for this field to the form. If a user doesn’t want to process all listed records, the user will use this column
to select the work order records to be assigned during processing. You will define the Selected data field as
unbound by using the PXBool type attribute. (Unlike the PXDBBool attribute, the PXBool attribute does not
have the DB part in its name. The absence of the DB part indicates an unbound data type.)

You will make all columns in the grid (except for the column that corresponds to the Selected field) unavailable
for editing by specifying SkinID="Inquire" for the grid. For the Selected column, you will set the
AllowCheckAll property of the corresponding control to True to make it possible for the users to select all
work orders listed on the current page of the table for assignment.

Creating Controls

To create the needed controls for the form, perform the following instructions:

1. In the RSSVWorkOrder DAC, add the unbound Selected data field, as shown in the following code.

 #region Selected
 public abstract class selected : PX.Data.BQL.BqlBool.Field<selected> { }
 [PXBool]
 [PXUIField(DisplayName = "Selected")]
 public virtual bool? Selected { get; set; }
 #endregion

2. Rebuild the project.

3. For the RS501000.aspx page, specify the following settings:

• PrimaryView of the datasource control: WorkOrders
• DataMember of the grid control: WorkOrders
• SkinID: Inquire

4. Create grid columns for the following fields of the RSSVWorkOrder DAC, and arrange them in the
following order:

https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=b8e279d0-fc1b-7a7a-3ed1-2d585a757e29
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=a7e64c67-ed03-2e54-67e5-218d2d5faa49

Part 1: Processing Form (Assign Work Orders) | 19

• Selected

• OrderNbr

• Description

• Service

• Device

• Priority

• Assignee

You can create controls by using the Screen Editor of the Customization Project Editor or by
editing the ASPX code of the form directly in Visual Studio.

5. For the grid control, specify the following required properties:

• AllowPaging: True
• AdjustPageSize: Auto

6. Adjust the size and appearance of the columns as follows:

a. For the Selected column, set the following property values:

• Type: CheckBox
• AllowCheckAll: True
• TextAlign: Center

b. Specify Width="140" for the columns that correspond to the Service and Device fields.

7. Save your changes.

8. Publish the customization project.

Step 1.1.5: Testing the Processing Form

In this step, you will test the Assign Work Orders (RS501000) form.

Testing the Form

Do the following to test the processing form:

1. On the Repair Work Orders (RS301000) form, open the 000001 repair work order and click Remove Hold. Do
the same with the 000002 repair work order.

2. On the Assign Work Orders (RS501000) form, make sure that two work orders are displayed on the form, as
shown in the following screenshot. These are the work orders that have been created with the publication
of the customization project in Initial Configuration. Notice that these work orders do not have assignees
specified.

Figure: Two work orders

Part 1: Processing Form (Assign Work Orders) | 20

3. On the Repair Work Orders (RS301000) form, specify the following assignees for the 000001 and 000002
repair work orders, and save your changes to each order:

• For the 000001 repair work order: Beauvoir, Layla
• For the 000002 repair work order: Baker, Maxwell

4. Create a repair work order with the following settings:

• Customer ID: C000000001
• Service: Battery Replacement
• Device: Nokia 3310
• Description: Battery replacement, Nokia 3310

5. Save the work order, click Remove Hold, and make sure the work order has the Ready for Assignment status.

6. Return to the Assign Work Orders (RS501000) form. Select all data records in the table by selecting the
check box in the header of the first column (with the unlabeled check box). (In a table with multiple pages of
records, selecting the check box in the column header selects the check box of only the rows on the current
page.)

7. On the form toolbar, click the Cancel button, which clears the selected check boxes and refreshes the list of
work orders on the form.

When you click the Cancel button, the system displays the message that is shown in the following
screenshot. Click OK to close the message and proceed. You will cause the system to suppress this message
in Lesson 1.2: Adding Filtering Parameters to the Processing Form.

Figure: Message

8. Select the check box in the header of the first column for the 000001 work order and click Assign on the
form toolbar. The Processing dialog box is displayed, which shows the progress and then the result of the
operation, as shown in the following screenshot. Close the dialog box.

Part 1: Processing Form (Assign Work Orders) | 21

Figure: The Processing dialog box

9. On the Repair Work Orders form, make sure that the 000001 work order now has the Assigned status and
that the assignee remains Beauvoir, Layla (it has not been changed to the default assignee), as shown in the
following screenshot.

Figure: Assigned work order

10.On the Assign Work Orders form, make sure that two work orders (000002 and 000005) are displayed on the
form. Click Assign All on the form toolbar. The Processing dialog box shows that two records have been
processed (see the following screenshot).

Part 1: Processing Form (Assign Work Orders) | 22

Figure: Assigned work orders

Make sure that for the 000002 work order, the assignee is Baker, Maxwell, which has been specified in
the work order. For the 000005 work order, the assignee is Becher, Joseph, which is the default assignee
specified on the Repair Work Order Preferences (RS101000) form.

Lesson Summary

In this lesson, you have learned how to create a simple processing form that displays data to be processed and
provides processing actions. For the processing form, you have defined:

• In the processing graph, the specific PXProcessing (derived from PXProcessingBase) data view type
to provide data records for the form.

• In the graph constructor, the names of the processing buttons.
• In the RowSelected event handler, the workflow action to be used for processing.
• In the DAC, the unbound Selected data field, which is used to indicate the records to be processed.
• In the ASPX page, the column in the grid for the Selected data field.

The following diagram shows the elements that you have implemented or modified for the processing form.

Part 1: Processing Form (Assign Work Orders) | 23

Review Questions

1. Which type of data view can you use to define a data view for the records to be processed in a processing
graph?

a. SelectFrom<Table>.View

b. PXProcessing<Table>

c. PXProcessing<Table>.View

2. Select all correct statements about the graph constructor of a processing form.

a. You must specify the processing delegate in the graph constructor of any processing graph.

b. In the graph constructor, you can specify the custom names of the processing actions.

c. In the graph constructor, you should not specify the workflow action by using the
SetProcessWorkflowAction<>() method.

Part 1: Processing Form (Assign Work Orders) | 24

Answer Key

1. b

2. b, c

Additional Information: Processing Dialog Box

In this lesson, you have defined the Assign Work Orders (RS501000) processing form. This form displays the
Processing dialog box during the assignment operation. Making changes to this dialog box, such as adding a
custom button to this dialog box, is outside of the scope of this course but may be useful to some readers.

Adding a Button to the Processing Dialog Box

When a processing operation is started, all elements of the processing form become unavailable. If you need to
make a button from the processing form available during processing, you have to add this button to the processing
dialog box, as described in To Add a Button to the Processing Dialog Box.

Hiding the Processing Dialog Box

You can turn off the displaying of the processing dialog box and instead display the progress and the result of the
processing on the form toolbar. For details, see To Not Display the Processing Dialog Box.

Additional Information: Parallel Processing

Suppose that you need to implement processing of items on a custom processing form. On this form, users process
large lists of items and all of these items can be processed independently. To speed up processing of these items,
you can implement parallel processing with Acumatica Framework. If you turn on the parallel processing, the list of
records that should be processed is split into batches and is processed in multiple threads.

Acumatica Framework has its own threading subsystem. We do not recommend that you mix it with
the default one from .Net.

For details about parallel processing, see PXParallelProcessingOptions Class.

Lesson 1.2: Adding Filtering Parameters to the Processing Form

In this lesson, you will modify the Assign Work Orders (RS501000) processing form so that it has filtering
parameters, which a user can use to filter the repair work orders in the table on the form. You will also define the
Assignee column of the table to be editable, so that a user of the form can use this column to select an assignee for
any listed repair work order.

Description of the Form Elements

The Summary area of the form will contain the following filtering parameters:

• Priority: If a user selects a value in this box, the table on the form displays only the repair work orders with
this priority. If no value is selected, repair work orders with all priority values are displayed in the table.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5561c9af-8f01-43ef-a320-56226b17d9f1
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5cf3c709-9640-4637-8827-e49830c33960
https://help.acumatica.com/Help?ScreenId=ShowWiki&pageid=5adaeaa4-6489-9504-30ca-f475d1cc1451

Part 1: Processing Form (Assign Work Orders) | 25

• Minimum Number of Days Unassigned: If a user types a number in this box, the table on the form displays
only the repair work orders that have been unassigned for a number of days that is greater than or equal to
the specified value.

• Service: If a user selects a value in this box, the table on the form displays only the repair work orders in
which the specified service is selected.

You will also add the Number of Days Unassigned column to the table on the form. The column will display the
number of days the repair work order has been unassigned. This value will not be stored in the database; it will
instead be calculated from the date when the repair work order has been created with the PXDBCalced attribute.

In the end of the lesson, the form will look as shown in the following screenshot.

Figure: The Assign Work Orders form with the filter

Lesson Objectives

In this lesson, you will learn how to do the following:

• Create processing pages with filtering parameters
• Use the PXDBCalced attribute

Step 1.2.1: Extending the DAC with a New Field (Using PXDBCalced)

In this step, you will extend the RSSVWorkOrder class with an additional DAC field that is specific to the
processing form.

You will add the TimeWithoutAction field. The value of this field is calculated during the retrieval
of each RSSVWorkOrder record from the database as the difference between the value of the
RSSVWorkOrder.DateCreated field and the current date, for which you will use the Now BQL constant. To
calculate the value, you will use the PXDBCalced attribute. In the expression calculated by this attribute, you
can use only the fields of the same DAC. For more information on the PXDBCalced attribute, see Ad Hoc SQL for
Fields.

Extending the RSSVWorkOrder DAC with the New Field

In the RSSVWorkOrder.cs file, add the new field as follows:

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=95f32fae-7e43-4998-8c17-4236039a9da9
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=95f32fae-7e43-4998-8c17-4236039a9da9

Part 1: Processing Form (Assign Work Orders) | 26

1. In the RSSVWorkOrder class, define the TimeWithoutAction field, which holds the number of days
that has passed from the date when the repair work order was created.

 #region TimeWithoutAction
 [PXInt]
 [PXDBCalced(
 typeof(RSSVWorkOrder.dateCreated.Diff<Now>.Days),
 typeof(int))]
 [PXUIField(DisplayName = "Number of Days Unassigned")]
 public virtual int? TimeWithoutAction { get; set; }
 public abstract class timeWithoutAction :
 PX.Data.BQL.BqlInt.Field<timeWithoutAction>
 { }
 #endregion

2. Build the project.

Related Links

• Ad Hoc SQL for Fields

Step 1.2.2: Defining the Filter DAC

In this step, you will define the RSSVWorkOrderToAssignFilter DAC, which will be used to display filtering
parameters on the Assign Work Orders (RS501000) form. You will define the DAC as follows:

• The DAC will contain three fields (ServiceID, TimeWithoutAction, and Priority) that correspond
to the filtering parameters.

• The DAC will contain only unbound fields because you do not need to save the values of the parameters to
the database.

• You will not define any key fields in the DAC because the DAC will work with only one data record.

You will assign the PXHidden attribute to the filter DAC because you do not need this DAC to be used in generic
inquiries and reports.

Defining the Filter DAC

To define the filter DAC, do the following:

1. In the RSSVAssignProcess graph, define the RSSVWorkOrderToAssignFilter data access class as
follows.

 [PXHidden]
 public class RSSVWorkOrderToAssignFilter : IBqlTable
 {
 #region Priority
 [PXString(1, IsFixed = true)]
 [PXUIField(DisplayName = "Priority")]
 [PXStringList(
 new string[]
 {
 WorkOrderPriorityConstants.High,
 WorkOrderPriorityConstants.Medium,
 WorkOrderPriorityConstants.Low
 },
 new string[]

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=95f32fae-7e43-4998-8c17-4236039a9da9

Part 1: Processing Form (Assign Work Orders) | 27

 {
 Messages.High,
 Messages.Medium,
 Messages.Low
 })]
 public virtual string Priority { get; set; }
 public abstract class priority :
 PX.Data.BQL.BqlString.Field<priority>
 { }
 #endregion

 #region TimeWithoutAction
 [PXInt]
 [PXUnboundDefault(0)]
 [PXUIField(DisplayName = "Minimum Number of Days Unassigned")]
 public virtual int? TimeWithoutAction { get; set; }
 public abstract class timeWithoutAction :
 PX.Data.BQL.BqlInt.Field<timeWithoutAction>
 { }
 #endregion

 #region ServiceID
 [PXInt()]
 [PXUIField(DisplayName = "Service")]
 [PXSelector(typeof(Search<RSSVRepairService.serviceID>),
 typeof(RSSVRepairService.serviceCD),
 typeof(RSSVRepairService.description),
 SubstituteKey = typeof(RSSVRepairService.serviceCD),
 DescriptionField = typeof(RSSVRepairService.description))]
 public virtual int? ServiceID { get; set; }
 public abstract class serviceID :
 PX.Data.BQL.BqlInt.Field<serviceID>
 { }
 #endregion
 }

2. Build the project.

Step 1.2.3: Defining the Data Views (with PXFilter and PXFilteredProcessing)

In this step, you will prepare the graph members that provide data for the form.

To add filtering capabilities to the Assign Work Orders (RS501000) processing form, you will define two data views:

• The data view of the PXFilter type, which provides the filtering parameters for the processing form. For
more information on defining filtering parameters, see Data View for the Filtering Parameters.

Avoid using the PXFilter data view type with DACs that have at least one key field defined—
that is, DACs that contain fields having the IsKey=true parameter in the type attribute.

• The data view of the PXFilteredProcessing type, which selects the repair work orders that meet the
criteria specified by the filtering parameters. For more information on data view types for processing forms,
see Creation of Processing Forms.

In the graph constructor, you will make the values in the Assignee column of the table editable. Because you have
specified the Inquiry skin ID for the table in ASPX (in Step 1.1.4: Creating Controls for the Processing Form), the

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=60c28bba-15da-4f17-aad2-be02e3eef2f8
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a007b57b-af69-4c0f-9fd1-f5d98351035f

Part 1: Processing Form (Assign Work Orders) | 28

columns of the table are not defined as being editable. You will enable the editing of the column in the graph
constructor (instead of in RowSelected event handler) because the UI presentation logic of this column doesn't
depend on the particular values of the data record.

You will also override the IsDirty property of the graph to make the IsDirty property always return false.
This disables the dialog box that confirms that a user wants to leave the form. This dialog box appears when a user
attempts to close the form if there are unsaved changes in the cache objects for the form. (You have seen this dialog
box in Step 1.1.5: Testing the Processing Form.) Because you have the filtering parameters on the form, which a user
can modify, and the editable Assignee column and the column with the unlabeled check box, you need to override
this property to omit the dialog box. A False value in the IsDirty property of the graph means that there are no
unsaved changes on the form, and the dialog box never appears. This behavior makes sense on processing forms,
which are not intended for data entry or editing.

Defining the Data Views

Do the following:

1. In the RSSVAssignProcess graph, define the Filter data view of the PXFilter type (as shown
below), which provides the filtering parameters for the processing form.

 public PXFilter<RSSVWorkOrderToAssignFilter> Filter;

2. Replace the definition of the Cancel action so that the action uses the filter DAC.

 public PXCancel<RSSVWorkOrderToAssignFilter> Cancel;

3. Replace the definition of the WorkOrders data view with the following of the PXFilteredProcessing
type, which selects repair work orders that match the values of the filtering parameters.

 public PXFilteredProcessing<RSSVWorkOrder,
 RSSVWorkOrderToAssignFilter,
 Where<RSSVWorkOrder.status.IsEqual<
 RSSVWorkOrderWorkflow.States.readyForAssignment>.
 And<RSSVWorkOrder.timeWithoutAction.IsGreaterEqual<
 RSSVWorkOrderToAssignFilter.timeWithoutAction.
 FromCurrent>.
 And<RSSVWorkOrder.priority.IsEqual<
 RSSVWorkOrderToAssignFilter.priority.FromCurrent>.
 Or<RSSVWorkOrderToAssignFilter.priority.FromCurrent.
 IsNull>>.
 And<RSSVWorkOrder.serviceID.IsEqual<
 RSSVWorkOrderToAssignFilter.serviceID.FromCurrent>.
 Or<RSSVWorkOrderToAssignFilter.serviceID.FromCurrent.
 IsNull>>>>,
 OrderBy<Desc<RSSVWorkOrder.timeWithoutAction,
 RSSVWorkOrder.priority.Desc>>> WorkOrders;

4. Replace the definition of the RowSelected event handler so that the event handler uses the filter DAC.

 protected virtual void _(Events.RowSelected<
 RSSVWorkOrderToAssignFilter> e)
 {
 WorkOrders.SetProcessWorkflowAction<RSSVWorkOrderEntry>(
 g => g.Assign);
 }

5. In the graph constructor, enable editing for the Assignee data field, as shown in the following code.

Part 1: Processing Form (Assign Work Orders) | 29

 PXUIFieldAttribute.SetEnabled<RSSVWorkOrder.assignee>(
 WorkOrders.Cache, null, true);

6. Override the IsDirty property of the graph, as the following code shows.

 public override bool IsDirty
 {
 get
 {
 return false;
 }
 }

7. Rebuild the project.

Related Links

• Creation of Processing Forms
• Data View for the Filtering Parameters

Step 1.2.4: Adjusting the ASPX Page (with SyncPosition and AutoRefresh)

In this step, you will adjust the ASPX page of the Assign Work Orders (RS501000) form to display the filter and data
to be processed.

Because the grid includes the Assignee column, in which each cell is a selector that displays the list of records
that depends on the currently selected row in the grid, you will specify the SyncPosition property of the grid
and the AutoRefresh property of the selector control. The SyncPosition property makes the system set
the Current property of the cache object to a row selected by the user in the grid. The AutoRefresh property
of a selector control causes the selector list to be refreshed automatically every time it is opened by the user.
These properties are required for the synchronization of the selector list with the currently selected row in the grid
because the data displayed in the selector depends on the selected row.

Adjusting ASPX

Adjust the ASPX of the form as follows:

You can perform the following instructions in the Screen Editor of the Customization Project Editor
or edit the ASPX code of the form directly in Visual Studio. For details on working with the Screen
Editor or editing the ASPX code in Visual Studio, see the T200 Maintenance Forms training course. The
instructions below are presented in general terms to accommodate both methods.

1. For the datasource control of RB501000.aspx, change the value of PrimaryView to Filter.

2. Add the form control, set its DataMember property to Filter, and its Width property to 100%.

3. In the form control, add input controls for the Priority, TimeWithoutAction, and ServiceID fields,
and set the CommitChanges property to True for these controls.

4. Split the controls into two columns and adjust the size of controls so that the labels are fully visible. You can
use LabelsWidth="XM" for the first column.

5. For the grid control, specify the following values of the properties:

• DataMember: WorkOrders
• SyncPosition: True

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=a007b57b-af69-4c0f-9fd1-f5d98351035f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=60c28bba-15da-4f17-aad2-be02e3eef2f8

Part 1: Processing Form (Assign Work Orders) | 30

In this case, setting the SyncPosition property to True is optional because the
PXSelector attribute attached to the Assignee field does not depend on the values of
other RSSVWorkOrderToAssign fields.

6. Add a column to the grid for the TimeWithoutAction data field and specify Width="100" for the
column.

7. For the Assignee column, specify the following values of the properties:

• CommitChanges: True
• AutoRefresh: True

This property is specified for the PXSelector control inside RowTemplate. For details
about how to specify the AutoRefresh property, see Step 2.2.1: Restricting the Values
of a Field (with PXRestrictor) in the T210 Customized Forms and Master-Detail Relationship
training course.

8. Publish the customization project.

Step 1.2.5: Testing the Filter

In this step, you will test the filtering parameters of the Assign Work Orders (RS501000) form. Do the following:

1. On the Repair Work Orders (RS301000) form, create three repair work orders with the settings specified in
the following table. Save each order and click Remove Hold.

 Work Order 000006 Work Order 000007 Work Order 000008

Customer ID C000000001 C000000002 C000000001

Service Battery Replacement Screen Repair Battery Replacement

Device Nokia 3310 Samsung Galaxy S4 Motorola RAZR V3

Assignee Beauvoir, Layla Empty Baker, Maxwell

Priority High Medium Medium

Description Test order Test order Test order

The created work orders have the Ready for Assignment status and have been assigned the 000006, 000007,
and 000008 order numbers (if you have created work orders only by following the instructions in the training
guides of the T courses).

2. On the Assign Work Orders form, test the filtering parameters as follows:

a. Make sure that the three work orders you have created are displayed on the form.

b. In the Priority box in the Summary area, select High. Make sure the 000006 work order is displayed in the
table, as shown in the following screenshot.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=24ca8a4f-6783-4120-b6ad-c76a5241090e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=24ca8a4f-6783-4120-b6ad-c76a5241090e

Part 1: Processing Form (Assign Work Orders) | 31

Figure: Work orders with the High priority

c. Clear the filter by clicking Cancel on the form toolbar.

d. In the Minimum Number of Days Unassigned box, type 1. Make sure that no work orders are displayed
in the table.

e. Change the value in the Minimum Number of Days Unassigned box to 0. Three work orders are
displayed.

f. In the Service box, select Battery Replacement. The 000006 and 000008 work orders are displayed in the
table.

g. In the Priority box, select Medium. Only the 000008 work order is displayed in the table.

h. On the form toolbar, click Assign All. The processing dialog box indicates that the 000008 work order is
processed. Make sure the work order has the Assigned status and is assigned to Baker, Maxwell (which
you have selected during creation), as shown in the following screenshot.

Figure: The assigned work order

3. Test the Assignee box on the Assign Work Orders form as follows:

a. Clear all filters. Two repair work orders (000006 and 000007) are displayed.

Part 1: Processing Form (Assign Work Orders) | 32

b. For the 000007 work order, in the Assignee box, select the Beauvoir, Layla employee.

c. On the form toolbar, click Assign All. The processing dialog box shows that two repair work orders are
processed. Make sure that the assignees are as shown in the following screenshot.

Figure: Two assigned work orders

Lesson Summary

In this lesson, you have learned how to define processing forms with filtering parameters. Because you have
already implemented the processing method in the previous lesson, to add a filter to the processing form, you have
completed the following steps:

1. Prepared the DAC that provides records for processing.

2. Defined the DAC that provides the filtering parameters for the processing form.

3. In the graph, defined the following data views:

• The data view of the PXFilter type, which provides data for the filter
• The data view of the PXFilteredProcessing type, which retrieves records for possible processing

4. In the graph, modified the RowSelected event handler so that it uses the primary DAC of the primary data
view, which is the RSSVWorkOrderToAssignFilter DAC.

You have also used the PXUIFieldAttribute.SetEnabled<>() method in the graph constructor to enable
editing for the Assignee data field.

The following diagram shows the changes implemented in this lesson.

Part 1: Processing Form (Assign Work Orders) | 33

Review Questions

1. Which data view type should you use for the grid on a processing form with filtering parameters?

a. PXProcessing<Table>

b. PXFilteredProcessing<Table>

c. SelectFrom<Table>.View

d. PXFilter<Table>

2. Which data view type should you use for the filter on a processing form?

a. PXProcessing<Table>

Part 1: Processing Form (Assign Work Orders) | 34

b. PXFilteredProcessing<Table>

c. SelectFrom<Table>.View

d. PXFilter<Table>

Answer Key

1. b

2. d

Part 2: Update of Data with a Custom Accumulator Attribute | 35

Part 2: Update of Data with a Custom Accumulator
Attribute

The functionality of the Assign Work Orders (RS501000) form that has been implemented so far is not enough for
the Smart Fix company. In accordance with the specifications of the managers of the company, the repair work
orders that are processed on the Assign Work Orders form should be automatically assigned to the employee with
the smallest number of repair work orders assigned. If there are multiple employees with the smallest number
of repair work orders assigned, the work orders will be assigned to the first of these employees selected from the
database.

To bring the form closer to these specifications, in this part of the guide, you will do the following:

• Modify the Assign Work Orders form so that it contains information about the number of work orders
assigned to potential assignees listed in the table

• Implement a custom PXAccumulator attribute that will count the number of repair work orders assigned
to each employee and update this number in the database during processing on the Assign Work Orders
form

The use of accumulator attributes is a specific Acumatica Framework technique for fields that are updated
frequently (and oen concurrently by multiple users). An accumulator attribute changes the SQL query that is
executed when the data is updated in the database. You can use an accumulator attribute in either of the following
cases:

• To update a field or multiple fields of a data record without checking for the data record version in the
database. (In an ordinary update, the framework generates the SQL statement that checks the timestamp
column, if this column exists in the table.)

• To define a specific update policy for a column—for instance, to calculate the sum of values in a column on
every update. You can also specify restrictions for a column that will be checked by the database during
update.

Aer you complete the lessons of this part, you will be able to test the updated functionality of the form and the
way the custom PXAccumulator attribute works.

Lesson 2.1: Implementing a Custom PXAccumulator Attribute

In the Smart Fix company, the number of assigned work orders may be updated very oen. Multiple users can
assign repair work orders to the same employee at the same time. To avoid problems that can be caused by
concurrent updates in the database, you will implement a custom attribute derived from the PXAccumulator
attribute. In this attribute, you will implement the calculation of the number of repair work orders assigned to a
particular employee. This attribute will compute the total of the number of repair work orders assigned to each
employee and restrict this number of orders for the employee so that the number may be no more than 10. The
accumulator attribute modifies the SQL query and guarantees that one repair work order assigned to an employee
is not counted multiple times.

Lesson Objectives

In this lesson, you will learn how to implement a custom attribute derived from the PXAccumulator attribute.

Step 2.1.1: Preparing the Data

In this step, you will complete—that is, indicate completion in the system of—all repair work orders that have the
Assigned status on the Repair Work Orders (RS301000) form.

Part 2: Update of Data with a Custom Accumulator Attribute | 36

In the database, you have the RSSVEmployeeWorkOrderQty table, which you have added in Initial Configuration
of this course and which will store the number of repair work orders assigned to a particular employee. This table
currently contains no data because you have not yet implemented the logic to update data in this table. However,
you have a number of repair work orders assigned to employees. Therefore, you need to complete these repair
work orders so that none of the employees has repair work orders assigned.

Completing the Repair Work Orders

To complete the work orders, on the Repair Work Orders (RS301000) form, do the following for each of the repair
work orders that have the Assigned status:

1. Open the repair work order.

2. Click Complete on the form toolbar.

The repair work orders you have completed now have the Completed status.

Step 2.1.2: Creating a DAC—Self-Guided Exercise

As you completed the Initial Configuration, you created the RSSVEmployeeWorkOrderQty database table,
whose NbrOfAssignedOrders column will be updated by the custom accumulator attribute. In this step,
you will create a data access class for this table. The ways to create a DAC are described in detail in the T200
Maintenance Forms training course.

As you add the RSSVEmployeeWorkOrderQty DAC, you will perform the following general actions:

1. You create the RSSVEmployeeWorkOrderQty data access class and define its single system field:
LastModifiedDateTime.

Database tables that are used exclusively for storing accumulated values usually do not
contain audit, timestamp, or NoteID columns. The base PXAccumulatorAttribute class
(on which you are going to base a custom attribute for this DAC) is only capable of handling
fields of the DateTime type that are decorated with one of the following attributes:

• PXDBLastModifiedDateTimeAttribute

• PXDBLastChangeDateTimeAttribute

• PXDBLastModifiedByScreenIDAttribute

• PXDBLastModifiedByIDAttribute

Thus the RSSVEmployeeWorkOrderQty table which you created in Step 3: Creating the
Database Table contains only one audit column, LastModifiedDateTime.

2. For the DAC, you specify the PXHidden attribute, which indicates that the DAC will not be used for reports
or generic inquiries.

3. In the RSSVEmployeeWorkOrderQty DAC, define the UserID and NbrOfAssignedOrders fields
and their attributes as follows:

• Mark the UserID field as the key field.
• Do not specify any display names for the fields because they will not be displayed in the UI.

Step 2.1.3: Implementing the Accumulator Attribute

In this step, you will create the custom RSSVEmployeeWorkOrderQtyAccumulator
accumulator attribute for the RSSVEmployeeWorkOrderQty DAC. For each employee, the custom

Part 2: Update of Data with a Custom Accumulator Attribute | 37

attribute will compute the total of the number of assigned work orders and save the value in the
RSSVEmployeeWorkOrderQty.NbrOfAssignedOrders field. The attribute will be derived from the
PXAccumulator system attribute. Although the base attribute can also be configured to summarize the values in
the RSSVEmployeeWorkOrderQty.NbrOfAssignedOrders field, you will use the custom attribute instead
of the base one because you need to specify a custom restriction for the number of work orders assigned to an
employee (no more than 10 work orders for each employee).

To define the custom accumulator attribute, you will do the following:

• Add the attribute constructor.
By setting the value of the _SingleRecord field in the constructor, you will make the system use single-
record update mode. In this mode, the attribute updates the data record independently from the existing
data records and does not add any restrictions to future data records. In single-record update mode, the
framework generates a specific SQL statement that updates an independent record.

• Implement the PrepareInsert() method.
In the PrepareInsert() method, you will define the updating policy for the NbrOfAssignedOrders
data field of the RSSVEmployeeWorkOrderQty DAC. The PrepareInsert() method is invoked
within the Persist() method before the framework generates SQL commands for inserted data records.
The fields for which you invoke the columns.Update() method are the only fields updated by the
attribute. The type parameter of the method specifies the data field to be updated; the first input parameter
specifies the value, while the second input parameter defines the updating policy for the data field. You will
specify the Summarize update policy for the field, which means that the new value is added to the value
stored in the database. For detailed information on the update policies of PXAccumulator attributes, see
Update of Data with PXAccumulator Attributes.
In the PrepareInsert() method, you will also specify the restriction that an employee cannot be
assigned more than 10 repair work orders. By using the columns.AppendException() method, you
will specify the restriction and define an exception that is thrown when the restriction is violated. The
condition you specify is checked against the resulting value the system gets aer adding the new value to
the one stored in the database. When you use the AppendException() method, the restriction works
correctly for both the insertion of a new value and the update of the old one. You will use the PXComp
enumerator value to specify the type of comparison in the restriction: PXComp.LE is less than or equal
to. For details about the implementation of restrictions in accumulator attributes, see Restrictions in the
Accumulator Attribute.

You will add the custom attribute directly to the RSSVEmployeeWorkOrderQty DAC, because this class is
updated only from code and not through the UI.

If you have a DAC that users can edit through the UI, you cannot assign a PXAccumulator attribute
directly to this DAC. Instead, you should derive a new DAC from the original one and assign the
accumulator attribute to this derived DAC, so that the derived DAC and the original DAC implement
the following alternative ways of updating the related table:

• All data fields are updated through the original DAC when a record is edited through the UI.
• The data fields specified in the accumulator attribute are updated through the derived DAC

according to the updating policies defined in the accumulator attribute when a record is
edited through the code.

Implementing the RSSVEmployeeWorkOrderQtyAccumulator Attribute

To implement the custom accumulator attribute, do the following:

1. In the Messages.cs file, add the following constant with the message, which is displayed when the
restriction specified in the accumulator attribute is violated.

 public const string ExceedingMaximumNumberOfAssingedWorkOrders =
 @"Updating the number of assigned work orders for the employee
 will lead to exceeding of the maximum number of assigned work orders,

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f6971bf1-d865-4f98-9127-07d056da2d5e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=63a1efdb-104e-4c07-b2c9-a9cb08746205
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=63a1efdb-104e-4c07-b2c9-a9cb08746205

Part 2: Update of Data with a Custom Accumulator Attribute | 38

 which is 10.";

2. In the RSSVEmployeeWorkOrderQty.cs file, define the
RSSVEmployeeWorkOrderQtyAccumulator attribute as follows.

 public class RSSVEmployeeWorkOrderQtyAccumulator :
 PXAccumulatorAttribute
 {
 //Specify the single-record mode of update in the constructor.
 public RSSVEmployeeWorkOrderQtyAccumulator()
 {
 _SingleRecord = true;
 }
 //Override the PrepareInsert method.
 protected override bool PrepareInsert(PXCache sender, object row,
 PXAccumulatorCollection columns)
 {
 if (!base.PrepareInsert(sender, row, columns)) return false;
 RSSVEmployeeWorkOrderQty newQty = (RSSVEmployeeWorkOrderQty)row;
 if (newQty.NbrOfAssignedOrders != null)
 {
 // Add the restriction for the value of
 // RSSVEmployeeWorkOrderQty.NbrOfAssignedOrders.
 columns.AppendException(
 Messages.ExceedingMaximumNumberOfAssingedWorkOrders,
 new PXAccumulatorRestriction<
 RSSVEmployeeWorkOrderQty.nbrOfAssignedOrders>(
 PXComp.LE, 10));
 }
 // Update NbrOfAssignedOrders by using Summarize.
 columns.Update<RSSVEmployeeWorkOrderQty.nbrOfAssignedOrders>(
 newQty.NbrOfAssignedOrders,
 PXDataFieldAssign.AssignBehavior.Summarize);
 return true;
 }
 }

3. Add the RSSVEmployeeWorkOrderQtyAccumulator attribute to the
RSSVEmployeeWorkOrderQty class, as shown below.

 [PXHidden]
 [RSSVEmployeeWorkOrderQtyAccumulator]
 public class RSSVEmployeeWorkOrderQty : IBqlTable
 { ...
 }

4. Build the project.

Related Links

• Update of Data with PXAccumulator Attributes
• Restrictions in the Accumulator Attribute

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f6971bf1-d865-4f98-9127-07d056da2d5e
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=63a1efdb-104e-4c07-b2c9-a9cb08746205

Part 2: Update of Data with a Custom Accumulator Attribute | 39

Lesson Summary

In this lesson, you have learned how to create a custom accumulator attribute to summarize the numbers of
assigned work orders for each employee during the assignment or completion of work orders.

In the custom attribute, you have defined the following elements:

• The constructor, in which you have specified the update mode for the records
• The PrepareInsert() method, in which you have defined the updating policy for the particular field

(the values of this field are summarized) and specified the restriction for the values of this field

You have also assigned the custom accumulator attribute to the DAC that stores the field to be updated by the
accumulator attribute.

The following diagram illustrates the implementation of the custom accumulator.

Review Questions

1. Where would you assign a PXAccumulator attribute?

a. To the fields that should be updated by the attribute

b. To the DAC that contains the field that should be updated by the attribute

c. To the DAC that contains the field that should be updated by the attribute if this DAC is editable only
through the code; otherwise, to a derived DAC

2. How would you specify the fields that should be updated by a PXAccumulator attribute?

Part 2: Update of Data with a Custom Accumulator Attribute | 40

a. Assign the attribute to these fields.

b. Define the fields in the PrepareInsert() method by using the columns.Update() method.

c. Define the fields in the attribute constructor by using the columns.Update() method.

d. Define the fields in the PrepareInsert() method by using the columns.AppendException()
method.

e. Define the fields in the attribute constructor by using the columns.AppendException() method.

Answer Key

1. c

2. b

Lesson 2.2: Modifying the Processing Form to Use the Field Updated by
PXAccumulator

In this lesson, you will modify the Assign Work Orders (RS501000) form so that if no assignee is specified for a repair
work order on the Repair Work Orders (RS301000) form, the system detects the default assignee for this repair work
order as the employee that has the fewest work orders assigned.

You will also modify the Assign and Complete actions on the Repair Work Orders (RS301000) form. When a user
clicks Assign, the number of assigned work orders for the corresponding assignee will be increased. When a user
clicks Complete, the number of assigned work orders for the assignee will be decreased. These calculations will be
performed by the custom accumulator attribute, which you have implemented in the previous lesson.

Database Tables and DACs Used for the Form

In this lesson, you will add the DefaultAssignee, AssignTo, and NbrOfAssignedOrders unbound
fields to the RSSVWorkOrder DAC (see the diagram below). The values of DefaultAssignee and
NbrOfAssignedOrders are calculated based on the values in the RSSVEmployeeWorkOrderQty table,
which holds the numbers of repair work orders assigned to employees.

The RSSVEmployeeWorkOrderQty table is linked to the EPEmployee table by UserID. (You have added the
RSSVEmployeeWorkOrderQty table to the application database in Initial Configuration and the corresponding
DAC to the customization code in Lesson 2.1: Implementing a Custom PXAccumulator Attribute.)

Part 2: Update of Data with a Custom Accumulator Attribute | 41

Lesson Objectives

In this lesson, you will learn how to do the following:

• Specify the values of the fields updated by a PXAccumulator attribute
• Use the PXDBScalar attribute
• Append and replace attributes on a certain DAC field within a particular graph
• Define the external presentation of field values

Step 2.2.1: Extending the DAC with New Fields

In this step, you will add the following new fields to the RSSVWorkOrder DAC:

• DefaultAssignee: The employee that has the lowest number of assigned repair work orders. You will
define the behavior of this field in the next step. For testing purposes (to make sure that the AssignTo
field is calculated correctly), the DefaultAssignee field will be displayed in the table on the Assign Work
Orders (RS501000) form and will not be editable. (You will delete the added column later, aer testing.)

• AssignTo: The employee to which the repair work order will be assigned. You will define the behavior
of this field in the next step. The AssignTo field will be displayed in the table on the Assign Work
Orders form. A user can change the value in this box. In this step, you will modify the constructor of the
RSSVAssignProcess graph to make the column editable.

• NbrOfAssignedOrders: The number of repair work orders that are assigned to the employee
specified in the AssignTo field. The value that is displayed in this field will be defined from the
RSSVEmployeeWorkOrderQty.NbrOfAssignedOrders field in the FieldSelecting event
handler (which will be implemented in Step 2.2.4: Defining the External Presentation of Field Values (in
FieldSelecting)). This field will be displayed in the UI and its corresponding column cannot be edited.

The Assignee column, which displays the value specified for the work order on the Repair Work Orders (RS301000)
form, will temporarily remain in the table on the Assign Work Orders form for testing purposes and will not be
editable.

Part 2: Update of Data with a Custom Accumulator Attribute | 42

Extending the RSSVWorkOrder DAC

Add the new fields to the RSSVWorkOrder DAC and edit the other code as follows:

1. In the RSSVWorkOrder class, define the DefaultAssignee field, as shown in the following code.

 #region DefaultAssignee
 [PXInt]
 [PXUIField(DisplayName = "Default Assignee")]
 public virtual int? DefaultAssignee { get; set; }
 public abstract class defaultAssignee :
 PX.Data.BQL.BqlInt.Field<defaultAssignee>
 { }
 #endregion

2. Define the AssignTo field, as shown below.

 #region AssignTo
 [PXInt]
 [PXUIField(DisplayName = "Assign To")]
 public virtual int? AssignTo { get; set; }
 public abstract class assignTo : PX.Data.BQL.BqlInt.Field<assignTo> { }
 #endregion

3. Define the NbrOfAssignedOrders field, as the following code shows.

 #region NbrOfAssignedOrders
 [PXInt]
 [PXUIField(DisplayName = "Number of Assigned Work Orders")]
 public virtual int? NbrOfAssignedOrders { get; set; }
 public abstract class nbrOfAssignedOrders :
 PX.Data.BQL.BqlInt.Field<nbrOfAssignedOrders>
 { }
 #endregion

4. In the constructor of the RSSVAssignProcess graph, replace the Assignee field with the AssignTo
field of the RSSVWorkOrder DAC. The resulting code of the constructor is shown in the following code.

 public RSSVAssignProcess()
 {
 WorkOrders.SetProcessCaption("Assign");
 WorkOrders.SetProcessAllCaption("Assign All");
 PXUIFieldAttribute.SetEnabled<RSSVWorkOrder.assignTo>(
 WorkOrders.Cache, null, true);
 }

5. Build the project.

Related Links

• Ad Hoc SQL for Fields

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=95f32fae-7e43-4998-8c17-4236039a9da9

Part 2: Update of Data with a Custom Accumulator Attribute | 43

Step 2.2.2: Replacing Field Attributes (with PXDBScalar and PXUnboundDefault in
CacheAttached)

In this step, you will add attributes that calculate values of the DefaultAssignee and AssignedTo fields of
the RSSVWorkOrder DAC. Because you need these calculations only for the Assign Work Orders (RS501000) form,
you will add these attributes by using the CacheAttached event handler.

Field Attributes

For the system to calculate the value of the DefaultAssignee field, you need to use the PXDBScalar
attribute. The PXDBScalar attribute selects the first record that matches the query specified in the attribute. In
the query, you will select records ordered by the number of assigned work orders ascending.

The system sets the value of the AssignedTo field to the employee selected for the work order on the
Repair Work Orders (RS301000) form (if the value is not null) or to the default assignee specified in the
DefaultAssignee field (if the value selected on the Repair Work Orders form is null). You will define this
behavior by using the PXUnboundDefault attribute.

To display the employee name instead of its ID (which is an integer value) and display the selector for the column if
it is editable, you will assign the Owner attribute to the DefaultAssignee and AssignTo fields.

Replacement of Attributes

The attributes that you add to a data field in the DAC are initialized once, during the startup of the domain. You can
replace attributes for a particular field by defining the CacheAttached event handler for this field in a graph.
These attributes are also initialized once, on the first initialization of the graph where you define this method.

In the RSSVAssignProcess graph, you will add the attributes to the RSSVWorkOrder DAC fields by using
the CacheAttached event handlers of these fields. These attributes will be used for the RSSVWorkOrder DAC
fields only on the Assign Work Orders (RS501000) form.

Instead of complete replacement of attributes, you will add the needed attributes to the fields by including the
PXMergeAttributes attribute in the list of assigned attributes.

Instructions for Replacement of Attributes

To implement calculations of field values for the RSSVAssignProcess graph, do the following:

1. In the RSSVAssignProcess.cs file, add the PX.TM and PX.Data.BQL.Fluent using directives.

2. To add the PXDBScalar attribute to the DefaultAssignee field, add the following event handler to the
RSSVAssignProcess graph and the PX.TM using directive to the RSSVAssignProcess.cs file.

 [PXMergeAttributes(Method = MergeMethod.Append)]
 [Owner(IsDBField = false, DisplayName = "Default Assignee")]
 [PXDBScalar(typeof(SelectFrom<OwnerAttribute.Owner>.
 LeftJoin<RSSVEmployeeWorkOrderQty>.
 On<OwnerAttribute.Owner.contactID.IsEqual<
 RSSVEmployeeWorkOrderQty.userID>>.
 Where<OwnerAttribute.Owner.acctCD.IsNotNull>.
 OrderBy<RSSVEmployeeWorkOrderQty.nbrOfAssignedOrders.Asc,
 RSSVEmployeeWorkOrderQty.lastModifiedDateTime.Asc>.
 SearchFor<OwnerAttribute.Owner.contactID>))]
 protected virtual void _(
 Events.CacheAttached<RSSVWorkOrder.defaultAssignee> e)

Part 2: Update of Data with a Custom Accumulator Attribute | 44

 { }

Since the DefaultAssignee field is unbound and does not exist in the database, in the
Owner attribute, you specify IsDBField = false.

3. To add the PXUnboundDefault attribute to the AssignedTo field, add the following event handler to
the RSSVAssignProcess graph.

 [PXMergeAttributes(Method = MergeMethod.Append)]
 [Owner(IsDBField = false, DisplayName = "Assign To")]
 [PXUnboundDefault(typeof(RSSVWorkOrder.assignee.When<
 RSSVWorkOrder.assignee.IsNotNull>.
 Else<RSSVWorkOrder.defaultAssignee>))]
 protected virtual void _(
 Events.CacheAttached<RSSVWorkOrder.assignTo> e)
 { }

4. Build the project.

Related Links

• Replacement of Attributes for DAC Fields in CacheAttached

Step 2.2.3: Modifying the Assignment and Completion Operations

In this step, you will modify the AssignOrders() static method and the complete() action handler of the
RSSVWorkOrderEntry graph so that they change the number of assigned work orders for each employee who is
assigned a repair work order or who completed a repair work order. You will assign 1 or -1 (depending on whether
the work order is assigned or completed) to the RSSVWorkOrder.NbrOfAssignedOrders field; the custom
accumulator attribute will add this value to the value stored in the database.

Modifying the Assignment and Completion Operations

Do the following to modify the AssignOrders() method and the complete() action handler:

1. In the RSSVWorkOrderEntry graph, define the data view for the calculation of the number of assigned
work orders per employee, as shown in the following code.

 //The view for the calculation of the number of assigned work orders
 //per employee
 public SelectFrom<RSSVEmployeeWorkOrderQty>.View Quantity;

2. In the AssignOrders() method of the RSSVWorkOrderEntry graph, add the following code before
the workOrderEntry.Actions.PressSave() call.

 //Modify the number of assigned orders for the employee.
 RSSVEmployeeWorkOrderQty employeeNbrOfOrders =
 new RSSVEmployeeWorkOrderQty();
 employeeNbrOfOrders.UserID = workOrder.Assignee;
 employeeNbrOfOrders.NbrOfAssignedOrders = 1;
 workOrderEntry.Quantity.Insert(employeeNbrOfOrders);

3. In RSSVWorkOrderEntry graph, modify the complete() action handler, as shown in the following
code.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=80e817bd-e70b-45b9-a9b1-2d2d0e2f8ee2

Part 2: Update of Data with a Custom Accumulator Attribute | 45

 public PXAction<RSSVWorkOrder> Complete;
 [PXButton]
 [PXUIField(DisplayName = "Complete")]
 protected virtual IEnumerable complete(PXAdapter adapter)
 {
 // Get the current order from the cache
 RSSVWorkOrder row = WorkOrders.Current;
 //Modify the number of assigned orders for the employee
 RSSVEmployeeWorkOrderQty employeeNbrOfOrders =
 new RSSVEmployeeWorkOrderQty();
 employeeNbrOfOrders.UserID = row.Assignee;
 employeeNbrOfOrders.NbrOfAssignedOrders = -1;
 Quantity.Insert(employeeNbrOfOrders);
 // Trigger the Save action to save changes in the database
 Actions.PressSave();
 return adapter.Get();
 }

4. Rebuild the project.

Related Links

• Implementation of Processing Operations

Step 2.2.4: Defining the External Presentation of Field Values (in FieldSelecting)

In this step, you will define the external presentation of values of the NbrOfAssignedOrders field of the
RSSVWorkOrder DAC—that is, the values that are displayed in the Number of Assigned Work Orders column in
the table on the Assign Work Orders (RS501000) form. For the configuration of the external presentation of values,
you will use the FieldSelecting event handler. In the event handler, you will retrieve the number of assigned
work orders for the employee selected in the AssignTo field of the RSSVWorkOrder DAC. If this value is null,
the value in the Number of Assigned Work Orders column will be 0. You will assign the external presentation of
the value to e.ReturnValue.

If you also need to set the internal presentation of the value, you need to assign it to e.NewValue in
the FieldUpdating event handler. For unbound data fields that are only displayed in the UI, you
can use only the FieldSelecting event that defines the UI presentation of the value. For details
about the external and internal presentation of values, see Internal and External Presentation of Values.

Configuring the External Presentation of the NbrOfAssignedOrders Field

Modify the RSSVAssignProcess graph as follows:

1. In the RSSVAssignProcess.cs file, add the PX.Data.BQL using directive.

2. In the graph, define the following FieldSelecting event handler.

 protected virtual void _(Events.FieldSelecting<RSSVWorkOrder,
 RSSVWorkOrder.nbrOfAssignedOrders> e)
 {
 if (e.Row == null) return;
 RSSVEmployeeWorkOrderQty employeeNbrOfOrders =
 SelectFrom<RSSVEmployeeWorkOrderQty>.
 Where<RSSVEmployeeWorkOrderQty.userID.IsEqual<@P.AsInt>>.
 View.Select(this, e.Row.AssignTo);

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=731abdaa-c97b-4d00-ba94-54840e4d173f
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=0f4f3154-49c0-4d60-865b-448bc49e1b18

Part 2: Update of Data with a Custom Accumulator Attribute | 46

 if (employeeNbrOfOrders != null)
 {
 e.ReturnValue = employeeNbrOfOrders.NbrOfAssignedOrders.
 GetValueOrDefault();
 }
 else
 {
 e.ReturnValue = 0;
 }
 }

3. Build the project.

Related Links

• Internal and External Presentation of Values

Step 2.2.5: Adjusting the ASPX Page—Self-Guided Exercise

Aer completing this step, you will have the following columns related to the employees in the table on the Assign
Work Orders (RS501000) form:

• Assignee: The assignee that is selected on the Repair Work Orders (RS301000) form for the work order. The
value can be null if no value is selected on the Repair Work Orders form.

• Default Assignee: The default assignee, which is calculated from the database values as the employee
that has the lowest number of assigned work orders. (You have implemented this logic by using the
PXDBScalar attribute in Step 2.2.2: Replacing Field Attributes (with PXDBScalar and PXUnboundDefault in
CacheAttached).)

• Assign To: The assignee to which the repair work order will be assigned during the assignment operation.
By default, for a work order, the system displays in this column the value from the Assignee column, if it
is not null. If the value in the Assignee column is null, the system displays the default value from the
Default Assignee column. (You have implemented this logic by using the PXUnboundDefault attribute in
Step 2.2.2: Replacing Field Attributes (with PXDBScalar and PXUnboundDefault in CacheAttached).) A user can
override the default value in this column.

The table on the Assign Work Orders (RS501000) form already contains the Assignee column. In this step, you will
add the Default Assignee, Assign To, and Number of Assigned Work Orders columns to the table.

You will remove the Assignee and Default Assignee columns, which are not necessary for the users of
the Assign Work Orders form, in Step 2.2.6: Testing the Processing Form and the Accumulator Attribute
aer you perform testing of the lesson.

Adjusting the RS501000.aspx Page

Do the following on your own:

1. Add the Default Assignee, Assign To, and Number of Assigned Work Orders columns to the table on the
Assign Work Orders (RS501000) form, and adjust the width of the columns. (For the Number of Assigned
Work Orders column, specify Width="100".)

You can add the columns in the Screen Editor of the Customization Project Editor or edit the
ASPX code of the form directly in Visual Studio. For details on working with the Screen Editor
or editing the ASPX code in Visual Studio, see the T200 Maintenance Forms training course.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=0f4f3154-49c0-4d60-865b-448bc49e1b18

Part 2: Update of Data with a Custom Accumulator Attribute | 47

2. Remove CommitChanges="True" for the Assignee column.

3. For the Assign To column, set the following properties:

• CommitChanges: True
• AutoRefresh: True

This property is specified for the PXSelector control inside RowTemplate. For details
about how to specify the AutoRefresh property, see Step 2.2.1: Restricting the Values
of a Field (with PXRestrictor) in the T210 Customized Forms and Master-Detail Relationship
training course.

4. Publish the customization project.

Step 2.2.6: Testing the Processing Form and the Accumulator Attribute

In this step, you will test the Assign Work Orders (RS501000) form and the custom accumulator attribute; you will
then remove the unnecessary UI elements from the form.

Testing the Form and the Attribute

To test the Assign Work Orders (RS501000) form, do the following:
1. On the Repair Work Orders (RS301000) form, create three repair work orders with the settings specified in

the following table. Save each of them and click Remove Hold.

 Work Order 000009 Work Order 000010 Work Order 000011

Customer ID C000000001 C000000002 C000000001

Service Battery Replacement Screen Repair Battery Replacement

Device Nokia 3310 Samsung Galaxy S4 Motorola RAZR V3

Assignee Andrews, Michael Empty Beauvoir, Layla

Description Test order Test order Test order

Notice that the created work orders have the Ready for Assignment status and have been assigned
the 000009, 000010, and 000011 order numbers (if you have created work orders only by following the
instructions in the training guides of the T courses).

2. On the Assign Work Orders (RS501000) form, make sure that the three repair work orders you have created
are displayed and that these work orders have the specified values in the Assignee, Default Assignee, and
Assign To columns, as shown in the screenshot below.

For the 000009 work order, the Assign To setting is Andrews, Michael, which is the value specified in the
Assignee column (that is, the value that you specified on the Repair Work Orders form).

For the 000010 work order, the Assign To setting is Baker, Maxwell, which is the value specified in the
Default Assignee column. The database currently does not have the information about the number of
repair work orders assigned to the employee. Therefore, this is the employee with the first UserID (which
is the key field) in the database.

For the 000011 work order, the Assign To setting is Beauvoir, Layla, which is the value specified in the
Assignee column.

Part 2: Update of Data with a Custom Accumulator Attribute | 48

Figure: The assignees on the Assign Work Orders form

3. For the 000011 work order, change the value in the Assign To column to Becher, Joseph.

4. On the form toolbar, click Assign All. The work orders should be processed successfully.

5. In the Processing dialog box, make sure the processed repair work orders have the assignees specified as
shown in the following table.

Work Order Assignee

000009 Andrews, Michael

000010 Baker, Maxwell

000011 Becher, Joseph

6. Review the records in the RSSVEmployeeWorkOrderQty table by using Microso SQL Server
Management Studio. The table contains three records (one for each employee to which repair work orders
have been assigned during this testing). The value in the NbrOfAssignedOrders column is 1 for each
row.

7. On the Repair Work Orders (RS301000) form, select the 000009 work order. Click Complete on the toolbar of
the Labor tab.

8. In SQL Server Management Studio, review the records in the RSSVEmployeeWorkOrderQty table. Now
for one of the rows, the value of NbrOfAssignedOrders is 0.

Removing the Unnecessary Columns from the Form

You should now remove the Assignee and Default Assignee columns from the table on the Assign Work Orders
(RS501000) form on your own.

You can remove the columns in the Screen Editor of the Customization Project Editor or edit the ASPX code of
the form directly in Visual Studio. For details on working with the Screen Editor or editing the ASPX code in Visual
Studio, see the T200 Maintenance Forms training course.

Part 2: Update of Data with a Custom Accumulator Attribute | 49

Lesson Summary

In this lesson, you have learned how to implement a processing operation by using a static method and how to
change the values of the fields that are updated by a PXAccumulator attribute.

You have modified the implementation of the AssignOrders() method and the complete() action handler
of the RSSVWorkOrderEntry graph so that 1 is added to or subtracted from the number of assigned work
orders. The value that is specified for the number of assigned work orders in the AssignOrders() method and
the complete() action handler is added to the value stored in the database by the custom PXAccumulator
attribute.

You have learned how to use the PXDBScalar and PXUnboundDefault attributes and how to define the
external presentation of a field value.

You have also learned how to replace attributes of a DAC field using the CacheAttached event handler.

The following diagram shows the changes that you have performed in this lesson.

Part 2: Update of Data with a Custom Accumulator Attribute | 50

Review Questions

1. Which attribute would you use to define the field value that should be the smallest value in the column of
the corresponding database table?

a. PXAccumulator

b. PXDBCalced

c. PXDBScalar

2. Suppose that you need to define the external presentation of a field value in run time. How would you
specify the external presentation of the value?

a. In e.NewValue of the FieldUpdating event handler

b. In e.ReturnValue of the FieldSelecting event handler

c. In e.NewValue of the FieldSelecting event handler

d. In e.ReturnValue of the FieldUpdating event handler

Answer Key

1. c

2. b

Part 3: Redirection to a Report at the End of Processing | 51

Part 3: Redirection to a Report at the End of Processing

For better usability of the Assign Work Orders (RS501000) form, the managers of the Smart Fix company have
requested that the form be modified so that at the end of the processing, the system displays a report that shows
which repair work orders have been assigned to which employees during the processing.

In this part of the course, you will modify the processing operation of the Assign Work Orders form so that it
displays this report at the end of the operation. You will use the RS601000.rpx report file, which is provided with
this training course, as the report to be displayed.

Creation of reports with Acumatica Report Designer is outside of the scope of this training course. To
learn more about creation of reports, see the S130 Data Retrieval and Analysis training course.

As part of completing the lesson of this part, you will test the updated functionality of the form.

Lesson 3.1: Adding Redirection to a Report at the End of Processing

In this lesson, you will modify the Assign Work Orders (RS501000) form so that it displays a report at the end of
processing. The report will list the repair work orders that have been assigned during the assignment operation
and the assignees to which they are assigned.

An example of the report about an assignment operation is shown in the following screenshot.

Figure: The report

You will also add the report file to the PhoneRepairShop customization project.

Part 3: Redirection to a Report at the End of Processing | 52

Lesson Objectives

In this lesson, you will learn how to do the following:

• Redirect to a report at the end of the processing delegate
• Include a report in a customization project

Step 3.1.1: Including a Report in the Customization Project

In this step, you will add the RS601000.rpx report file, which is provided with this training course, to the
customization project. You must include the report file in the customization project so that the report is available in
each Acumatica ERP instance to which you publish the PhoneRepairShop customization project.

The report is not supposed to be used directly from the UI of Acumatica ERP; therefore, you will not include it in any
workspace.

Including RS601000.rpx in the Customization Project

To include the report file in the customization project, do the following:

1. Copy the RS601000.rpx file to the ReportsCustomized folder of your Acumatica ERP instance for the
training course. The system uses this folder to search for custom and customized Acumatica ERP reports.

2. In the Customization Project Editor, open the PhoneRepairShop customization project.

3. On the Custom Files page, add the ReportsCustomized\RS601000.rpx file, and save your changes.

For details on adding files to the customization project, see To Add a Custom File to a Project in
the documentation.

4. Publish the customization project.

5. On the Site Map (SM200520) form of Acumatica ERP, add a new row with the following settings, and save
your changes:

• Screen ID: RS.60.10.00
• Title: Assigned Work Orders
• URL: ~/frames/reportlauncher.aspx?id=RS601000.rpx
• Graph Type: Empty
• Workspaces: Empty
• Category: Empty

6. In the Customization Project Editor (with it opened for the PhoneRepairShop customization project), on the
Site Map page, add the site map item for the Assigned Work Orders report.

For details about addition of a site map item to the customization project, see To Add a Site
Map Node to a Project in the documentation.

7. Publish the customization project.

Testing the Report

In Acumatica ERP, make sure the report is displayed correctly as follows:

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=01a694bb-8e42-436c-89ad-2c42c040089a
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=44b364ef-7810-400b-b1c6-8f471c249401
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f474bd1e-f20d-4376-a1e0-4656a0932e67
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f474bd1e-f20d-4376-a1e0-4656a0932e67

Part 3: Redirection to a Report at the End of Processing | 53

1. Open the Assigned Work Orders (RS601000) report form.

2. On the report form toolbar, click Run Report. The report is displayed as shown in the following screenshot.
Because no filtering is specified in the report settings, the report displays all the repair work orders that
exist in the application database. When the system redirects to this report from the Assign Work Orders
(RS501000) form, filtering will be specified.

Figure: Assigned Work Orders report

Related Links

• To Add a Custom File to a Project
• To Add a Site Map Node to a Project

Step 3.1.2: Adding Redirection to a Report

In this step, you will implement redirection to the Assigned Work Orders (RS601000) report at the end of the
AssignOrders() method. The report will display the repair work orders that have been assigned during the
processing operation the user invoked on the form.

To redirect to the report, you will throw the PXReportRequiredException exception. Once an exception
is thrown, it interrupts the current context and propagates up the call stack until it is handled by Acumatica
Framework, which performs the redirection. You don't need to implement the handling of the exceptions that are
used for redirection.

The Assigned Work Orders report has no filtering parameters. You will pass the data to be displayed
in the report (that is, the repair work orders that have been assigned) in the parameters of the
PXReportRequiredException constructor.

For details about the implementation of redirection to webpages, see Redirection to Webpages in the
documentation.

Implementing Redirection to a Report

To implement the redirection, do the following:

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=01a694bb-8e42-436c-89ad-2c42c040089a
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=f474bd1e-f20d-4376-a1e0-4656a0932e67
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=1fe245c2-b7de-42c7-a16c-217dc369c802

Part 3: Redirection to a Report at the End of Processing | 54

1. In the Messages.cs file, add the following constant, which specifies the name of the webpage that will
display the report.

 public const string ReportRS601000Title = "Assigned Work Orders";

2. In the RSSVWorkOrderEntry.cs file, modify the AssignOrders() method, as follows:

a. In the beginning of the method, add the following lines.

 // The result set to run the report on.
 PXReportResultset assignedOrders =
 new PXReportResultset(typeof(RSSVWorkOrder));

b. In the end of the try block, add the following code.

 // Add to the result set the order
 // that has been successfully assigned.
 if (workOrder.Status == WorkOrderStatusConstants.Assigned)
 {
 assignedOrders.Add(workOrder);
 }

c. In the end of the method, add the following code.

 if (assignedOrders.GetRowCount() > 0 && isMassProcess)
 {
 throw new PXReportRequiredException(assignedOrders, "RS601000",
 Messages.ReportRS601000Title);
 }

3. Build the project.

4. Publish the customization project.

Related Links

• Redirection to Webpages

Step 3.1.3: Testing the Redirection to the Report

In this step, you will test the redirection to the Assigned Work Orders (RS601000) report, which should occur at the
end of the assignment operation on the Assign Work Orders (RS501000) form.

Testing the Redirection to the Report

To test the redirection to the report, do the following:

1. On the Repair Work Orders (RS301000) form, create three repair work orders with the settings specified in
the following table. Save each of them and click Remove Hold.

 Work Order 000012 Work Order 000013 Work Order 000014

Customer ID C000000001 C000000002 C000000001

Service Battery Replacement Screen Repair Battery Replacement

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=1fe245c2-b7de-42c7-a16c-217dc369c802

Part 3: Redirection to a Report at the End of Processing | 55

 Work Order 000012 Work Order 000013 Work Order 000014

Device Nokia 3310 Samsung Galaxy S4 Motorola RAZR V3

Assignee Andrews, Michael Empty Beauvoir, Layla

Description Test order Test order Test order

The created work orders have the Ready for Assignment status and have been assigned the 000012, 000013,
and 000014 order numbers (if you have created work orders only by following the instructions in the training
guides of the T courses).

2. On the Assign Work Orders (RS501000) form, make sure that three repair work orders are displayed.

3. On the form toolbar, click Assign All. At the end of the processing, the Assigned Work Orders (RS601000)
report is displayed for the three assigned work orders, as shown in the following screenshot.

Figure: Assigned Work Orders report

Lesson Summary

In this lesson, you have learned how to implement the redirection to a report at the end of the processing
delegate. You have used the PXReportRequiredException exception to perform the redirection.
You have passed the result set with the data of the repair work orders that have been assigned to the
PXReportRequiredException constructor.

The following diagram shows the summary of the implementation.

Part 3: Redirection to a Report at the End of Processing | 56

Review Questions

1. Which approach can you use to redirect to a report at the end of the processing?

a. Throw the PXReportRequiredException exception in the processing method

b. Throw the PXReportRequiredException exception and handle it in the processing method

c. Implement an action handler and call it in the processing method

2. Which information do you need to include in the customization project so that the customized application
performs redirection to a custom report?

a. Only the report file

b. The report file and its position in the UI

c. The report file, its position in the UI, and the implementation of the redirection to this report (in an
extension library or a Code item of the customization project)

Answer Key

1. a

Part 3: Redirection to a Report at the End of Processing | 57

2. c

Appendix: Use of Event Handlers | 58

Appendix: Use of Event Handlers

This topic lists the scenarios in which particular event handlers have been used in this course.

Event Scenario Examples in the Guide

CacheAttached Replacing the attributes of a DAC field Step 2.2.2: Replacing Field Attributes (with
PXDBScalar and PXUnboundDefault in
CacheAttached)

FieldSelecting Defining the external presentation of a
field value (that is, the value that is dis-
played in the UI)

Step 2.2.4: Defining the External Presenta-
tion of Field Values (in FieldSelecting)

RowSelected Specifying the workflow action to be used
for the processing

• Step 1.1.3: Configuring the Processing
Graph and Data View (with PXProcessing
and RowSelected)

• Step 1.2.3: Defining the Data Views (with
PXFilter and PXFilteredProcessing)

Appendix: Reference Implementation | 59

Appendix: Reference Implementation

You can find the reference implementation of the customization described in this course in the Customization
\T240 folder of the Help-and-Training-Examples repository in Acumatica GitHub.

https://github.com/Acumatica/Help-and-Training-Examples

Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course | 60

Appendix: Deploying the Needed Acumatica ERP Instance
for the Training Course

If for some reason you cannot complete the instructions in Step 2: Preparing the Needed Acumatica
ERP Instance for the Training Course, you can create an Acumatica ERP instance as described in this
topic and manually publish the needed customization project as described in Appendix: Publishing the
Required Customization Project.

You deploy an Acumatica ERP instance and configure it as follows:

1. To deploy a new application instance, open the Acumatica ERP Configuration Wizard, and do the following:

a. On the Database Configuration page, type the name of the database: PhoneRepairShop.

b. On the Tenant Setup page, set up a tenant with the I100 data inserted by specifying the following
settings:

• Login Tenant Name: MyTenant
• New: Selected
• Insert Data: I100
• Parent Tenant ID: 1
• Visible: Selected

c. On the Instance Configuration page, in the Local Path of the Instance box, select a folder that is
outside of the C:\Program Files (x86) or C:\Program Files folder. We recommend that
you store the website folder outside of these folders to avoid an issue with permission to work in these
folders when you perform customization of the website.

The system creates a new Acumatica ERP instance, adds a new tenant, and loads the selected data to it.

2. Sign in to the new tenant by using the following credentials:

• Username: admin
• Password: setup
Change the password when the system prompts you to do so.

3. In the top right corner of the Acumatica ERP screen, click the username and then click My Profile. On the
General Info tab of the User Profile (SM203010) form, which the system has opened, select YOGIFON in the
Default Branch box; then click Save on the form toolbar.

In subsequent sign-ins to this account, you will be signed in to this branch.

4. Optional: Add the Customization Projects (SM204505) and Generic Inquiry (SM208000) forms to your favorites.
For details about how to add a form to favorites, see Managing Favorites: General Information.

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=8430c8b2-a79c-4f7b-9768-b0b7fad23a59
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=4d3a1166-826c-414b-a207-3d1669fbf9e5
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=5388c653-eac4-4f43-b769-163cd037ab09
https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=6ec5534a-8fe8-4b8d-83d2-721d9c2d5864

Appendix: Publishing the Required Customization Project | 61

Appendix: Publishing the Required Customization Project

If for some reason you cannot complete the instructions in Step 2: Preparing the Needed Acumatica
ERP Instance for the Training Course, you can create an Acumatica ERP instance as described in
Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course and manually publish
the needed customization project as described in this topic.

You load the customization project with the results of the T230 Actions training course and publish this project as
follows:

1. On the Customization Projects (SM204505) form, create a project with the name PhoneRepairShop, and
open it.

2. In the menu of the Customization Project Editor, click Source Control > Open Project from Folder.

3. In the dialog box that opens, specify the path to the Customization\T230\PhoneRepairShop folder,
which you have downloaded from Acumatica GitHub, and click OK.

4. Bind the customization project to the source code of the extension library as follows:

a. Copy the Customization\T230\PhoneRepairShop_Code folder to the App_Data\Projects
folder of the website.

By default, the system uses the App_Data\Projects folder of the website as the parent
folder for the solution projects of extension libraries.

If the website folder is outside of the C:\Program Files (x86) and C:\Program
Files folders, we recommend that you use the App_Data\Projects folder for the
project of the extension library.

b. Open the solution, and build the PhoneRepairShop_Code project.

c. Reload the Customization Project Editor.

d. In the menu of the Customization Project Editor, click Extension Library > Bind to Existing.

e. In the dialog box that opens, specify the path to the App_Data\Projects
\PhoneRepairShop_Code folder, and click OK.

5. On the menu of the Customization Project Editor, click Publish > Publish Current Project.

The Modified Files Detected dialog box opens before publication because you have rebuilt
the extension library in the PhoneRepairShop_Code Visual Studio project. The Bin
\PhoneRepairShop_Code.dll file has been modified and you need to update it in the
project before the publication.

The published customization project contains all changes to the Acumatica ERP website and database that have
been performed in the previous training courses of the T series. This project also contains the customization plug-
in, which fills in the tables created in these training courses with the custom data entered in these training courses.
For details about the customization plug-ins, see To Add a Customization Plug-In to a Project. (The creation of
customization plug-ins is outside of the scope of this course.)

https://help-2022r1.acumatica.com/Help?ScreenId=ShowWiki&pageid=c69443fe-4d32-47a9-85aa-b2882aa259ef

	Contents
	Copyright
	Introduction
	How to Use This Course
	Course Prerequisites
	Initial Configuration
	Step 1: Preparing the Environment
	Step 2: Preparing the Needed Acumatica ERP Instance for the Training Course
	Step 3: Creating the Database Table

	Company Story and Customization Description
	Part 1: Processing Form (Assign Work Orders)
	Lesson 1.1: Creating a Simple Processing Form
	Step 1.1.1: Creating the Form—Self-Guided Exercise
	Step 1.1.2: Changing the Processing Action
	Step 1.1.3: Configuring the Processing Graph and Data View (with PXProcessing and RowSelected)
	Step 1.1.4: Creating Controls for the Processing Form
	Step 1.1.5: Testing the Processing Form
	Lesson Summary
	Review Questions
	Additional Information: Processing Dialog Box
	Additional Information: Parallel Processing

	Lesson 1.2: Adding Filtering Parameters to the Processing Form
	Step 1.2.1: Extending the DAC with a New Field (Using PXDBCalced)
	Step 1.2.2: Defining the Filter DAC
	Step 1.2.3: Defining the Data Views (with PXFilter and PXFilteredProcessing)
	Step 1.2.4: Adjusting the ASPX Page (with SyncPosition and AutoRefresh)
	Step 1.2.5: Testing the Filter
	Lesson Summary
	Review Questions

	Part 2: Update of Data with a Custom Accumulator Attribute
	Lesson 2.1: Implementing a Custom PXAccumulator Attribute
	Step 2.1.1: Preparing the Data
	Step 2.1.2: Creating a DAC—Self-Guided Exercise
	Step 2.1.3: Implementing the Accumulator Attribute
	Lesson Summary
	Review Questions

	Lesson 2.2: Modifying the Processing Form to Use the Field Updated by PXAccumulator
	Step 2.2.1: Extending the DAC with New Fields
	Step 2.2.2: Replacing Field Attributes (with PXDBScalar and PXUnboundDefault in CacheAttached)
	Step 2.2.3: Modifying the Assignment and Completion Operations
	Step 2.2.4: Defining the External Presentation of Field Values (in FieldSelecting)
	Step 2.2.5: Adjusting the ASPX Page—Self-Guided Exercise
	Step 2.2.6: Testing the Processing Form and the Accumulator Attribute
	Lesson Summary
	Review Questions

	Part 3: Redirection to a Report at the End of Processing
	Lesson 3.1: Adding Redirection to a Report at the End of Processing
	Step 3.1.1: Including a Report in the Customization Project
	Step 3.1.2: Adding Redirection to a Report
	Step 3.1.3: Testing the Redirection to the Report
	Lesson Summary
	Review Questions

	Appendix: Use of Event Handlers
	Appendix: Reference Implementation
	Appendix: Deploying the Needed Acumatica ERP Instance for the Training Course
	Appendix: Publishing the Required Customization Project

