T190 Quick Start in Customization

Q Acumatica

The Cloud ERP

Vidhyalakshmi Hariharasubramanian

Sr. Technical Account Manager

Timing and Agenda

March 23, 2023 -10:00-11:30 AM
Day 1
Lesson 1: Creating a Customization Project

Lesson 2: Creating Custom Fields

March 24, 2023 -10:00-11:30 AM
Day 2

Lesson 3: Implementing the Update and Validation of
Field Values

Lesson 4: Creating an Acumatica ERP Entity
Corresponding to a Custom Entity

Lesson 5: Deriving the Value of a Custom Field from
Another Entity

Lesson 6: Debugging Customization Code

Acumatica

P Om

Firestone

- Paretta Autosport
e _,Aqu;patica Partner

Introduction — Customization Project

A customization project is a set of changes to the user interface, configuration data, and functionality of
Acumatica ERP.

The customization project holds the changes that have been made for a particular customization, which
might include changes to the mobile site map, generic inquiries, and the properties of Ul elements.

To apply the content of a customization project to an instance of Acumatica ERP, you must publish the
project.

Designing the application involves:

1.

Designing Database Structure and DACs — Taking care of naming conventions for Tables (DACs) and
Columns (Fields), deciding Primary Key and relationships, audit fields and other fields for concurrency
control (Tstamp), attachments (NotelD), multitenancy support (CompanylD and CompanyMask), multiple
branch support (BranchID and UsrBranchiD).

Designing the User Interface — Taking care of naming/numbering of Forms/Reports, designer setup,
item grouping, configuring the aspx and several elements like containers, tabs, layout, etc.

Designing Graphs and Event Handlers — deciding on names of graphs and event handlers and graph

suffixes, inserting/updating/deleting data records, saving changes to database, etc. Acurnatica

Introduction - Customization Projects

Database

Schema

new tables, new columns in existing tables,
and other new database objects

Data

custom or modified reports and
changes in the application configuration
(modified site map, user access roles,
locales, and other new items stored in the
database)

Customization
project

File System

Custom files

new DLLs, custom ASPX pages, and other
files required for the customized product

ASPX file changes

changes in the look and behavior of the user
interface

C# files with customization code

changes in the business logic

Acumatica

Introduction — Application Architecture

1. Data Access Layer - Set of DACs that wrap data

from tables.

2. Business Logic Layer — implemented through AATCDS N N el
graphs — tied to one or more DACs. Graphs contain (ASPNED Entty Model Entty Business Logio Data
data views (references to the required data access . pctons Evares Classes
classes, their relationships, and other meta — . R B"”_‘“”
information) and business logic (actions and events B W “auny batabase
associated with the modified data). (SOAP, Rest) PRGNS -Picmpese -Fold D A" management

3. Presentation Layer - provides access to the
application business Iogic through the Ul, web Presentation Layer Business Logic Layer Data Access Layer
services, and Acumatica mobile application. The Ul
consists of ASPX webpages (which are based on the
ASP.NET Web Forms technology) and reports
created with Acumatica Report Designer. The ASPX
webpages are bound to graphs.

Acumatica

Querying of the Data

« BQL (Business Query Language) — Acumatica’s custom language for writing database queries.
« BQL is written in C# and based on generic class syntax and like SQL.
« Benefits of BQL:

- does not depend on the specifics of the database provider.

- compile-time syntax validation.

« Provides two dialects of BQL: traditional BQL and fluent BQL (short and simple).

BQL SQL
SelectFrom<Product> SELECT * FROM Product
.Where<Product.availQty.IsNotNull. WHERE Product.AvailQty IS NOT
And NULL
<Product.availQty.IsGreater AND Product.AvailQty >
<Product.bookedQty>>> Product.BookedQty

Acumatica

P

e
- o
..'.\\

prastasssy P

g
—y
- -

.&.mh. ::::r
& 2 - -

’..' LA A

LR
B

-
1IN gl BAY

Oonni G

S——

roup ‘f’it

Acumatica Customer

Company Story - Smart Fix company

The Smart Fix company specializes in repairing cell phones of several types and can both repair cell phones and sell parts for the repair. The
company provides the following services:

Battery replacement
Repair of liquid damage

Screen repair

Users can create repair work orders to record repair process and sales orders to record sale of the parts associated with a repair. Employees
need to verify the information on both repair work orders and sales orders, including the details of the invoices created for these orders.

The Acumatica ERP instance of the Smart Fix company contains the below custom forms which we will create in other T series of courses:

1.

o s~ DN

Repair Services maintenance form (RS201000) - will be used to view the list of all services, add a new service, edit an existing service,
and delete a service.

Serviced Devices maintenance form (RS202000) - used to view the list of devices that are serviced by the company in a grid.
Services and Prices maintenance form (RS203000) — used to define and maintain the prices for each repair service.
Repair Work Orders data entry form (RS301000) — used to create and manage individual work orders for repairs.

Repair Work Order Preferences setup form (RS101000) — used by an admin user to specify company’s preferences for the repair work
orders.

In this course, we will customize the Stock Items form (IN202500) — to mark a stock item as repair item. And perform the below changes:

Update of a field value that depends on another field value on the Services and Prices custom maintenance form.
Validation of a field value on the Repair Work Orders custom data entry form.

Creation of an SO invoice for a repair work order on the Repair Work Orders form.

Acumatica

Lesson 1: Creating a Customization Project

Learning Objectives:

In this lesson, you will learn how to do the following:
« Create a customization project

 Load a customization project from a local folder

* Bind a customization project to an extension library

* Publish a customization project

Acumatica

Step 1.1 and 1.2: Creating a Customization Project and Loading Iltems to the
Customization Project

Creation of a Customization Project: Loading Items:

1. Onthe Customization Projects (SM204505) form,

1. InAcumatica ERP, open the Customization click PhoneRepairShop in the table to open the
Projects (SM204505) form. customization project that you have created.

2. On the form toolbar, click Add Row. 2. On the menu of the Customization Project Editor,

3. Inthe Project Name column, enter the click Source Control > Open Project from Folder.
customization project name: PhoneRepairShop. 3. Inthe dialog box that opens, specify the path to the

4. On the form toolbar, click Save. Customization\T190\SourceFiles\PhoneRepairShop

folder, which you have downloaded from Acumatica

GitHub in Initial Configuration, and click OK.

Acumatica

Figure: Items of the customization project

ustomization Project Editor Back

File Publish Extension Library Source Control

PhoneRepairShop « Custom Files

» SCREENS O) X + DETECT MODIFIED FILES

Data Access
Cod & [Object Name Third Party Description Last Modified By Last Modified
ode Assembly on
| Files (23)
. - > @ Bin'PhoneRepairShop_Code dIl O admin admin 11/15/2021
Generic Inquirias (3)
Reports @ InputDatalinventoryltem csv O admin admin 11/15/2021
Dashboards @ lnputDatalRSSVDevice csv [m] admin admin 11/15/2021
Site Map (6) @ InputDatalRSSVLabor.csv O admin admin 111152021
Database Scripts (11)
B M InputDatalRSSVRepairltem csv O admin admin 1111512021
ystem Locales
Import/Export Scenarios @ InputData\RSSVRepairPrice csv O admin admin 11/15/2021
Shared Filters (1) @ InputData\RSSVRepairService. csv [m] admin admin 11/15/2021
A Rights
Wc_:fass “ @ InputDatalRSSVSetup csv m admin admin 11572021
ikis
Web Service Endpaints i InputDatalRSSVStockltemDevice csv O admin admin 11/15/2021
Analytical Reports @ InputData\RSSVWarranty.csv O admin admin 11/115/2021
Push Notifications @ InputDatalRSSVWorkOrder.csv O admin admin 11/15/2021
Business Events R .
M InputDatalRSSVWaorkOrderltem csv O admin admin 11/15/2021
Mobile Application
User-Defined Fields il InputData\RSSVWorkOrderLabor.csv O admin admin 111572021
Webhooks i Pages'RS\RS101000.aspx O admin admin 11/15/2021
Connected Applications @ Pages'\RSIRS101000.aspx.cs 0O admin admin 1115/2021
i Papes'RSIRS201000 aspx O admin admin 111152021
il Pages'RS\RS201000 aspx.cs O admin admin 111572021
M Pages'RS\RS202000.aspx O admin admin 11/15/2021
i Pages'RS\RS202000 aspx.cs O admin admin 11/15/2021
il Papes'RSIRS203000 aspx O admin admin 111572021
i Pages'RS\RS203000.aspx.cs O admin admin 11/15/2021
M Pages'RS\RS301000.aspx O admin admin 11/15/2021 O Acumatica 13
i Pages'RS\R3301000 aspx.cs O admin admin 11/15/2021 The Cloud ERP

Q Acumatica 14

The Cloud ERP

Q Extension L|brary \ \A .

Cherry Lake Tree Farm
Acumatica Customer

Introduction - Extension Libraries

An extension library is a Visual Studio project that contains customization code and can be individually developed and
tested.

An extension library .dll file must be in the Bin folder of the website. At run time during the website initialization, all the
.dll files of the folder are loaded into the server memory for use by the Acumatica ERP application.

Best for:

Primary storage:

Location within the website folder:
Intellectual property protection:

Run-time compilation without the application
domain being restarted:

Editor:

IntelliSense feature in Visual Studio:
Acuminator extension for Visual Studio:
Debugging:

Integration with a version control system:

Additional:

Code in DAC and Code items

Quick start of a customization

Database
App_RuntimeCode

No—the source code is open in the
deployment package

Yes

Code Editor, Visual Studio
No
No
Yes
Yes

Can be moved to an extension library when
needed

Code in an Extension Library

Development of a customization project when
more than one developer is involved

File system
Bin

Yes—the source code is not provided in the
deployment package

No

Visual Studio
Yes
Yes
Yes

Yes

Acumatica

More about Extension Libraries

Two ways to maintain the source code of customization:

1. Keep the code in the customization project
as DAC and Code items.

2. Move the code to an extension library and include the
library in the project as a File item.

To decide about how to work with the code, consider the
following questions:

« How much code will be in the customization project?
+ Is there a need for replicability of the customization?
« How many developers will take part in coding?

- Do you need to open the source code in the production
environment?

Factors to decide the necessity of the Extension
Library are:

More than five class extensions for business logic
controllers.

Will be deployed on more than one system.

Will be developed by a team that needs to use a version
control system.

To protect the intellectual property of the source code of
the solution.

Will be a plug-in for Acumatica ERP.

Acumatica

Step 1.3 Binding the Extension Library

Steps to create an Extension Library:

1. Copythe
Customization\T190\SourceFiles\PhoneRepairShop
_Code folder to the App Data\Projects folder of the
Acumatica ERP instance that is prepared for this training
course.

2. On the menu of the Customization Project Editor, click
Extension Library > Bind to Existing.

3. Inthe dialog box that opens, specify the path to the
App Data\Projects\PhoneRepairShop Code folder,
and click OK.

4. Open the Visual Studio solution and build the

PhoneRepairShop Code project.

PhoneRepairShop_Code.sIn

Solution.bat

Solution.Ink

folder.Ink

PhoneRepairShop_
Code\PhoneRepairShop_
Code.csproj

PhoneRepairShop_Code\Examples.

Cs

PhoneRepairShop_
Code\Properties\
Assemblylnfo.cs

Microsoft Visual Studio
Solution file

Windows batch file to open
the website solution Visual
Studio

Shortcut file to the project
to open the website
solution

Shortcut file to the website
folder

Visual C# project file

Visual C# source file that
contains examples of
source code

Visual C# Source file that
contains general
information about an
assembly

Acumatica

Step 1.4: Publishing the Customization Project

To publish the project, do the following:

1.

2.

Open the PhoneRepairShop customization project in the Customization Project Editor.

Click Files on the left pane of the Customization Project Editor. The Custom Files page opens.

On the page toolbar, click Detect Modified Files. Because we have rebuilt the extension library in the
PhoneRepairShop Code Visual Studio project, the Bin\PhoneRepairShop Code.dll file has been

modified.

In the Modified Files Detected dialog box, which opens, make sure the Selected check box is selected for the
Bin\PhoneRepairShop Code.dll file, and click Update Customization Project.

Close the dialog box.

On the menu of the Customization Project Editor, click Publish > Publish Current Project. The Compilation
panel opens, which shows the progress of the publication.

Close the Compilation panel when the publication has completed, and the Website updated message is displayed.

Acumatica

Step 1.5: Reviewing the changes in Acumatica ERP

1. Open the Acumatica ERP instance and notice the changes in the main menu under Phone Repair Shop
workspace (as shown in the next slide).

2. Open the Repair Services (RS201000) form and review its content and functionality.
3. Open any other forms in the Phone Repair Shop workspace and review their content and functionality.

4. In Microsoft SQL Server Management Studio, connect to the database of the current Acumatica instance and find
the database tables with names starting with RSSV. These are the custom tables added during the publishing of
the customization project.

5. Open the Acumatica ERP instance folder in the file system. Notice the following files and folders:

1. Pages\RS: Contains the ASPX code of the custom forms. The forms have the RS prefix in their IDs. therefore, they are placed
in the custom RS subfolder.

2. InputData: Contains CSV files with the data for the custom tables. This data is inserted in the database by the InputData
customization plug-in, which is included in the customization project.

3. CstPublished\pages_RS: Contains the published code of the custom ASPX pages.

4, Bin\PhoneRepairShop_Code.dll: Contains the customization source code in an extension library.

Acumatica

Figure: The Phone Repair Shop workspace

TooLs -
Favorites Phone Repair Shop
Data Views Configuration Profiles Preferences

Repair Services Stock Items Repair Work Order Preferences Es

1}

Phone Repair Shop Serviced Devices Repair Work Orders

i Services and Prices
Time and Expenses

@ olal e »

Finance

Banking

Payables

® 0 «»

Receivables

®

Sales Orders

Purchases

g «

Inventory

i1 More ltems

@ Acumatica 21

The Cloud ERP

Figure: The Repair Services custom form

Repair Services CUSTOMIZATION ~ TOOLS ~

¢] 9+ X - X
B 0 O *Service D * Description Active Walk-In Requires Requires
Service Prepayment Preliminary
Check
be [0 BATTERYREPLACE Battery Replacement

0 0O LIQUIDDAMAGE Liquid Damage

&
&l

U [0 SCREENREPAIR Screen Repair

=

Acumatica

Q Acumatica 23

The Cloud ERP

Lesson Summary

In this lesson, you have learned
how to create a customization
project, load content to a
customization project from a
local folder, bind the project to
an extension library, and
publish the project.

The following diagram shows
the changes that have been
applied to the Acumatica ERP
instance for the training course
after the customization project
has been published.

New Custom Elements

‘Predefined ASPX pages of
:Acumatica ERP

Custom ASPX pages

LEGEND

New custom elements

I | Other elements

Application

‘Predefined Acumatica ERP
i libraries

Extension library

Custom files

Database

‘Predefined Acumatica ERP
itables

Custom tables

Acumatica

Lesson 2: Creating Custom Fields

Learning Objectives

In this lesson, you will learn how to do the following:

* Add a custom column to an Acumatica ERP database table
* Add a custom field to an Acumatica ERP data access class

» Add the control for the custom field to the form

Acumatica

Purpose

The manager of the Smart Fix Company needs to specify some stock items on Stock Items (IN202500) form as repair
item and select the corresponding type. It can be achieved by changing below:

- The Database table - create a custom database column using Customization Project Editor.
« The DAC - add a new field to accommodate the database column using Visual Studio.

« The User Interface — create a control in the screen or ASPX from the DAC field using Customization
Project Editor.

Changes to be implemented to Stock Items (IN202500) form to the Item Defaults section of General tab:
« The Repair Item check box will be used to define whether the selected stock item is a repair item.

« The Repair Item Type box will hold the repair item type to which the repair item belongs
- Battery, Screen, Screen Cover, Back Cover, or Motherboard.

« Custom Fields are added to IN.Inventoryltem DAC and Inventoryltem database table.

Acumatica

Q Acumatica Customization Platform

— An Overview

OFS International
Acumatica Customer

Acumatica Customization Platform — An Overview

| .
Provides the ability to customize the functionality or behavior of Data ba se . We bSIte fO | d er
the form. L = .
Customization o Bin
Based on extension models. project data . folder
An extension for a graph (BLC) or a DAC is a class derived from . PX.Obiects.dll
a generic class defined in PX.Data assembly of Acumatica. : App-RuntimeCode file. jects.
- DAC Extension is derived from - fliclet
PXCacheExtension<T> generic class. =
DAC - DAC extension | Original
- BLC/Graph Extension is derived from extension L. C# file DAC
PXGraphExtension<T> generic class. Publication of
the project
The graph/cache extensions present/published in a BLC BLC extension Original
customization project are applied to the base class at run time extension D Cit file BLC
during the first initialization of the base class. .
Supports multi-level extensions — to develop applications .
distributed in multiple editions. During run-time, the system o
collects list of all the extensions and load in alphabetical order. .

“$ Table

%3 PXCacheExtension<Table> Initialization Initialization Cache
14 PXCacheExtension<Extensionl, Table>

% PXCach 2 Table> . . of the DAC of the BLC
4 PXCachbtendon<bdensond sndond ndond Tbe> Application

%3 PXCacheE B 4E 2E 1,Table> YY YY

%4 PXCach Ex 5,E: 4 E 2 Table>

i PXCach E 5 Extensiond, 2 1 Table> Merged DAC Merged BLC
%4 PXCacheE: E 7,E ,E 5,E E 3,E 2,E Table>

0 PACachic 2 A i : o , . —

b PXCocheE , i et = £ 5 3 P o e

%4 PXCacheExtensionAttribute

Acumatica

public class DACExtension

{

}

public class BLCExtension

{

Acumatica Customization Platform — An Overview (Contd..)

PXCacheExtension<BaseDAC>

//Put new fields definition here

//Customize existing attributes and fields

PXGraphExtension<BaseBLC>

//Put new event handlers, actions, data views or
methods here

//Customize existing logic with defining new one
with the same name

Database
MyTable
table
[] [
MyField
column

n

- Application

n

: MyGraph graph

| |

|

| |

u Cache

| |

: MyTable MyField
'-—-:—----lﬂDAc EEEEEER field EEEEEER

| |

. A

u]

u W

|]

|

: MyDV dataview \ 4

" Dat
ﬁ‘ Methods to manipulate data

|

| |

|

[] BOL ‘ MyTable DAC reference

| |

|

|

| |

|

Data f

Website

MyPage.aspx page

-P-I-I-IIIII

PXDataSource
control

ID = ds

TypeMame = MyGraph
PrimaryView = MyDV

Data

{

Container

DataSourcelD = ds
DataMember = MyDV

]
[
MyField control
]
]

Acumatica ‘

Step 2.1: Creating a custom column and field with the Project Editor

In this step, we will create a custom column for Repair Item checkbox to Inventoryltem database table and a custom field to IN.Inventoryltem
Data Access Class.

« Create a DAC extension or cache extension of IN.Inventoryltem DAC to hold the custom fields.

« Open the Stock Iltems (IN202500) form, and then open the Screen Editor for it as follows:
1. On the form title bar, click Customization > Inspect Element — to find the details about the tab and section

2. Click the name of the General tab to open the Element Properties dialog box (provides details about the Control Type, Data access Class,
View Name and the BLC or Graph of the control and the form).

3. Click Customize.

4. Inthe Select Customization Project dialog box, which opens, select the PhoneRepairShop customization project, and click OK. The
Customization Project Editor opens for the PhoneRepairShop project; the Screen Editor is displayed for the Tab: ItemSettings node, which is
selected in the control tree.

- To add a custom field for the Repair Item check box in the customization project

1. On the Screen Editor page, click the Add Data Fields tab.

2. On the table toolbar, click New Field.

3. Inthe Create New Field dialog box, which opens, specify the following settings for the new field:
1. Field Name: RepairItem
2. Display Name: Repair Item
3. Storage Type: DBTableColumn
4. Data Type: bool

Acumatica
4. Click OK to create the extensions to both DAC and the database table with Ext as suffix to the IN.Inventoryltem DAC.

Figure:

Stock Items
New Record

“ O+ om0

* Inventory ID:

Item Status: Active -
Description:
GENERAL PRICE/COST WAREHOUSES

ITEM DEFAULTS

1< < >

VENDORS

* |tem Class L 7
Type Finished Good -
[J Repair Item
Repair ltem Type: -
Valuation Method: Standard -
* Tax Category: jol
* Posting Class: 0 7
Auto-Incremental Value:
Country Of Origin jol
WAREHOUSE DEFAULTS
Default Warehouse: o 7

UNIT OF MEASURE

* Base Unit 0P 7 Divisible Unit
* Sales Unit: o 7 Divisible Unit
* Purchase Unit 0P 7 Divisible Unit
[0 Weight Item
o +
*From Multiply/Divid Conversion To Unit
Unit Factor
L

Custom elements to be added to the Stock Items form

[NOTES ACTIVITIES FILES CUSTOMIZATION TOOLS ~
>
~
Product Workgroup: Q
Product Manager jol
ATTRIBUTES PACKAGING CROSS-REFERENCE GLACCOUNTS »

@ Acumatica

The Cloud ERP

Figure: Customization menu

Stock ltems
New Record

“ v+ T O

+ |Inventory 1D:

Item Status Active -

Description

GENERAL PRICE/COST WAREHOUSES

ITEM DEFAULTS

I< < > >l

0 Product Workgroup

Product Manager

VENDORS ATTRIBUTES PACKAGING

UNIT OF MEASURE

CROSS-REFERENCE

* [tem Class:
Type Finished Good
Valuation Method Standard

* Tax Category:

* Posting Class
Auto-Incremental Value
Country Of Origin

WAREHOUSE DEFAULTS

0| & +Base Unit

Default Warehouse:

- * Sales Unit:
- * Purchase Unit:
P 7 (O Weight Item
o176 +
*From Multiply/Divid
R Unit
P Z

Conversion To Unit

[NOTES ACTIVITIES FILES CUSTOMIZATION TOOLS =

Select Project.

Inspect Element (Ctrl+Alt+Click)
Edit Project...

Manage Customizations...

DESCRIPTION

@ Acumatica

The Cloud ERP

32

Figure: Element Properties dialog box

Element Properties X

Control Type: Tab
Data Class: Inventoryltem
View Name: ItemSettings

Business Logic’ InventoryltemMaint

@ Acumatica

The Cloud ERP

Step 2.1: Creating a custom column and field with the Project Editor — Continued..

- Move the data access class extension to the PhoneRepairShop_Code extension library:
1. Inthe navigation pane, click Data Access.
2. On the Customized Data Classes page, click the line with Inventoryltem.
3. On the page toolbar, click Convert to Extension.
4. The InventoryltemExtensions Code item appears in the Code Editor.
5

On the toolbar of the Code Editor, click Move to Extension Lib.

« In Visual Studio, adjust the DAC extension as follows:

1. Movethe InventorylItemExtensions.cs file to the DAC folder and open the file. Notice that Acuminator displays the PX1016 error and
the PX1011 warning for the InventoryItemExt class. We can either suppress or fix the Acuminator errors/warnings.

2. Remove virtual from the UsrRepairItem property field.

3. Make sure the UsrRepairItem field has the attributes shown in the following code.
[PXDBBoo1]
[PXUIField (DisplayName="Repair Item")]

[PXDefault (false, PersistingCheck = PXPersistingCheck.Nothing)]

4. Build the project.

Acumatica

Figure: Suppression of the error in a comment

23 amespace PX.0Objects.IN 4 PhoneRepairShop_Code
24 b M Properties
U referances b wm References
25 'public'(lass'quentob TtemExt- : - PXCacheExtension<PX.0Objects.IN.InventoryItem> b bin
26 T 4 @l DAC
27 UsrRepairIte R
34 Mark the type as sealed | b c* InventoryltemExtensions.cs
35 s the PX1016 diagnostic with Acuminator » | [; - b eem
= i A |'""’ comment | b ‘ €3 PX1016 A DAC extension must include the public static IsActive methad with the bool return type. Extensions which are constantly active re
Suppress the PX1011 diagnostic with Acuminator » | in the Acuminator suppression file performance. Suppress the error if you need the DAC extension to be constantly active.
Suppress or Configure issues » | L{i"es 24 to 26
// Acuminator disable once PX1016 ExtensionDoesNotDeclareIsActiveMethod extensien should be constant
public class InventoryItemExt : PXCacheExtension<PX.Objects.IN.InventoryItem>
{
4 »
100% - i 1 < > A 4
Preview changes

Figure: Fix of the warning

25 P -//-.Mm-disable-unce-FX'lG'lG- ExtensionDoesNotDeclareIlsActiveMethod- extension- should-be- constantly-active P @ PhoneRepairShop
0 references 4 PhoneRepairShop_Code
26 ;- - -public-class- InventoryItemExt - : - PXCacheExtension<PX.Objects.IN.InventoryItem> > & Properties
27 | . : y P =-m References
28 = -#region-UsrRep,
29 | +---[PXDBBool] Mark the type as sealed | m ! PX1011 Because multiple levels of inheritance are not supported for PXCacheExtension, the derived type can be marked as sealed L
30 [+ - - - [PXUTField(Dis| syppress the PX1011 diagnostic with Acuminator » | Lines 25 to 27 T pr—
31 N N // Acuminator disable once PX1816 ExtensionDoesNotDeclarelsActiveMethod extension should be constantly active ~
0 references Suppress or Configure issues 4 _ . - RSSVDevice.cs
“ bli i rtual BooTi UsrR T £ £ public class InventoryItemExt : PXCacheExtension<PX.Objects.IN.InventoryItem> RSSVRepairService.cs
[Trrpublicrvartual-boals-Usrhepair em-{-get;-set; -} public lass InventoryItemExt : PXCacheExtension<PX.0Objects.IN.InventoryItem> P :
1 reference a
33 t---public-abstract-class-usrRepairItem-:-PX.Data.BQL.BglBo { per
34 t- - -#endregion onstants.cs
35 sl Preview changes ——
36 o

Fix all occurrences in: Document | Project | Solution

I b < RSSVDeviceMaintcs

@ Acumatica 35

The Cloud ERP

Step 2.2: Creating a Control for the Custom Field

Open the Screen Editor for the Stock Items (IN202500) form.
« In the control tree of the Screen Editor, click the Tab: ItemSettings node.

- On the Add Data Fields tab, select the Custom filter tab to view the custom fields that are available through the
data view of the container. Notice that the Control column displays the available control type for the custom field.

« Create the control for the custom field as follows:
In the control tree of the Screen Editor, select the Type node to position the new control beneath it.

On the Add Data Fields tab, select the unlabeled check box for the row with the custom field.

On the table toolbar, click Create Controls to create the control for the selected field.

On the menu of the Customization Project Editor, click Publish > Publish Current Project to apply the customization to the site.
Close the Compilation window.

Refresh the Stock Items form in the browser to view the added control on the General tab of the form.

Acumatica

Figure: The Type node in the control tree

Screen Editor: IN202500 (Stock ltems)

) EDIT ASPX PREVIEW CHANGES

O -

v (P DataSource: InventoryltemMaint
» (P Form: ltem
~ [@ Tab: ltemSettings

« [General

~ (W Column
Template ID
~ B Group
Item Class

Is a Kit
Valuation Method
Tax Category
Posting Class
Lot/Serial Class
Auto-Incremental Value
Country Of Origin
Form: CurySettings_Inventoryltem
Merge
[Layout Rule]

> Column
» [Subitems
» [Price/Cost
» B Manufacturing

-

-

» (W Warehouses hd

LAYOUT PROPERTIES ATTRIBUTES EVENTS

Data View: Inventory Item(ltemSettings)
CREATE CONTROLS NEW FIELD

Used Field Name

UsrRepairltem (Repair [tem)

ADD CONTROLS ADD DATAFIELDS

ALL VISIBLE

Control

CheckBox

CUSTOM

Acumatica

Figure: The added control

Screen Editor: IN202500 (Stock Items)

) B EDITASPX PREVIEW CHANGES

(¢} - LAYOUT PROPERTIES ATTRIBUTES EVENTS ADD CONTROLS ADD DATA FIELDS VIEW ASPX
DataSource: InventoryltemMaint - ;
= Y Data View Inventory Item(ltemSettings) A
» (3 Form: ltem
~ (3 Tab: ltemSettings CREATE CONTROLS NEW FIELD ALL VISIBLE CUSTOM
~ [General
O Used Field Name Control

+ [Column
Template 1D UsrRepairltem (Repair ltem) CheckBox
~ B3 Group
Item Class
Type
Repair ltem
Is a Kit
Valuation Methed
Tax Category
Posting Class
Lot/Serial Class
Auto-Incremental Value
Country Of Origin
» [Form: CurySettings_Inventoryltem
v [P Merge
{3 [Layout Rule]
» (@ Column
» [P Subitems
» [Price/Cost
» [P Manufacturing A

@ Acumatica 38

The Cloud ERP

Figure: The Repair Item check box

Stock Items
New Record
“ v+ T - KK
* Inventory 1D jo
Item Status Active -
Description
GENERAL PRICE/COST WAREHOUSES VENDORS
ITEM DEFAULTS
= [tem Class: jol
Type Finished Good -
Valuation Method Standard -
* Tax Category: jel
* Posting Class jo
Auto-Incremental Value:
Country OFf Origin: jel
WAREHOUSE DEFAULTS
Default Warehouse: jo

[NOTES ACTIVITIES FILES CUSTOMIZATION
>l
Product Workgroup pel
Product Manager o
ATTRIBUTES PACKAGING CROSS-REFERENCE
UNIT OF MEASURE
& = Base Unit: P 7 Divisible Unit
» Sales Unit: P 7 EDivisible Unit
* Purchase Unit: 07 Divisible Unit
(J Weight ltem
70 4+
*From Multiply/Divid Conversion To Unit
Unit Factor

TOOLS ~

@ Acumatica

The Cloud ERP

39

Q Acumatica 40

The Cloud ERP

Step 2.3: Creating a Custom Column with the Project Editor and a Custom Field
with Visual Studio

Will define the UsrRepairItemType data field in the InventoryItemExt DAC extension and Repair Item Type
combo box as input control.

To add the column to the Inventoryltem table, in the Customization Project Editor, open the PhoneRepairShop project
-> Database Scripts -> Add Column to Table. In the dialog box that opens, specify the following values and click OK:
Table: Inventoryltem

Field Name: UsrRepairltemType
Data Type: string
Length: 2

In Visual Studio, in the Helper\Constants.cs file, add the RepairItemTypeConstants class — to define the
constants for repair item types.

public const string Battery = "BT";

Inthe Helper\Messages.cs file, define the strings for the repair item types in the Messages class.
public const string Battery = "Battery";

Add the field UsrRepairItemType — (PXDBString) to the InventoryItemExt DAC — with PXStringList
attribute utilizing the above constant strings.

Build the project. Acumatica

Step 2.4: Creating a control for the Custom Field

« Create a control for Repair Item Type custom field from the UsrRepairItemType field added to
the InventoryItemExt DAC.

« Can be done either from the Screen Editor or from the ASPX of the page.

« For custom forms, ASPX can be found inside Pages folder of the instance. For customized version
of existing pages, ASPX can be found inside CstPublished folder of the instance. Files in
CstPublished folder are available for preview in the Ul and are overridden once the package is
published.

« Make sure the type of the control is Combo box or Dropdown.

Acumatica

Figure: The Repair Item Type box

Stock Items [INOTES ACTIVITIES FILES CUSTOMIZATION TOOLS -
New Record
“ O+ W o@- Ko< >
-~
* Inventory 1D: jol Product Workgroup: yol
Item Status: Active - Product Manager: 2
Description:
GENERAL PRICE/COST WAREHOUSES VENDORS ATTRIBUTES PACKAGING CROSS-REFERENCE GLACCOUNTS »
ITEM DEFAULTS UNIT OF MEASURE
* |tem Class: 0/ +Base Unit o 7 Divisible Unit
Type: Finished Good - = Sales Unit P 7 Divisible Unit
[J Repair Item * Purchase Unit: o 7 Divisible Unit
Repair ltem Type - | [J Weight Item
Valuation Method: Standard - @) +
* Tax Category: Jo iy s
*From Multiply/Divid Conversion To Unit
* Posting Class: » 7 Unit Factor
Auto-Incremental Value:
Country Of Origin: jol
WAREHOUSE DEFAULTS
Default Warehouse: 0D 7

@ Acumatica

The Cloud ERP

43

Step 2.5: Making the Custom Field Conditionally Available (with RowSelected)

The Repair Item Type box should be unavailable on the Stock Items (IN202500) form unless

the Repair Item check box is selected.

Changes to the DAC: Changes to the graph:
Repair Item Type box is made « Addthe RowSelected event handler to
unavailable by default by setting the make the Repair Item Type field

available based on the selection of

Enabled property of the Repair Item checkbox.

PXUIField attribute of

UsrRepairltemType IN « Access UsrRepairItem by invoking

InventoryItemExt DAC to GetExtension method to

false. InventoryItem DAC and use
PXUIFieldAttribute.SetEnabled<
> () tochange the Enabled property of
UsrRepairItemType extension field.

An event handler can be added either from
Screen Editor and navigating to the
corresponding control -> Events tab -> Add
Handler -> Keep Base Method or can be
added from Visual Studio though code in
InventoryItemMaint.cs file.

Changes to the ASPX page:

Set CommitChanges to True for
Repair Item checkbox.

If the value in a box needs to be
processed every time the user
changes this value, we need to set
the CommitChanges property of the
box to True to enable callbacks for
the box.

Acumatica

Figure: The generation of the event handler

Screen Editor: IN202500 (Stock Items)

) EDITASPX PREVIEW CHANGES
¢ W~
» (3 DataSource: InventoryltemMaint -

v (@ Form: ltem
~ (@ Tab: ltemSettings
~ [General
~ [Column
Template ID
~ (3 Group

Item Class
Type
Repair ltem Type
Is a Kit
Valuation Method
Tax Category
Posting Class
Lot/Serial Class
Auto-Incremental Value
Country Of Origin

» [Form: CurySettings_Inventoryltem

» [Merge
[Layout Rule]

» [Column

3 Subitems

» Price/Cost -

LAYOUT PROPERTIES

Data Class:
Field Name:

Business Logic:

ATTRIBUTES EVENTS

PX Objects IN Inventoryltem

UsrRepairltem

PX_.Objects IN_InventoryltemMaint::-ltemSettings

O LU EVDIEZ RS VIEW SOURCE

Com

Override Base Method

B Even Keep Base Method |

RowSelecting

ADD CONTROLS

ADD DATAFIELDS

Handled in Source

O

VIEW AS

Customized

O

> | RowSelected

FieldSelecting
Rowlnserting
RowlInserted
RowUpdating
RowUpdated
RowDeleting
RowDeleted
FieldDefaulting
FieldUpdating
FieldVerifying

ExceptionHandlina

N 0O0O0Oojgo

Jo0000ao0n0

JOoooooooooao|jglo

@ Acumatica

The Cloud ERP

45

Figure: The CommitChanges property

Screen Editor: IN202500 (Stock ltems)

) B EDITASPX PREVIEW CHANGES

O mw-
» (P DataSource: InventoryltemMaint
» (P Form: Item
~ [@ Tab: ltemSettings
~ [General
~ [P Column
Template ID
~ [@ Group
Item Class
Type
Repair ltem Type
Is a Kit
Valuation Method
Tax Category
Posting Class
Lot/Serial Class
Auto-Incremental Value
Country Of Origin
» (3 Form: CurySettings_Inventoryltem
v (@ Merge
{3 [Layout Rule]
» (P Column
» [Subitems

» £ Price/Cost <

LAYOUT PROPERTIES ATTRIBUTES EVENTS ADD CONTROLS ADD DATAFIELDS

O - ¥
Override Property Value

v Base Properties

CommitChanges True -

1 DataField UsrRepairltem
~ D CstPXCheckBox1
Size
Text
v Ext Properties
AlignLeft
Alreadyl ocalized
3 AutoCallBack
» Checklmages
Enabled
FalseValue
LabelWidth

RenderStyle
Indicates whether the contrel perferms commit callback after the value of the control has been changed.

Acumatica

Q Acumatica 47

The Cloud ERP

More about Event Handlers and RowSelected event

An event handler can be implemented in a graph, as well as in an
attribute of a data field.

» Graph event handlers - defined as methods in a BLC class for
a particular DAC or a DAC field.

+ Attribute event handlers - defined as methods in attribute
classes. And is attached to all DAC objects or data fields with
these attributes.

Types of Event Handlers

Classic (Obsolete):

public virtual void DAC_Field FieldUpdated(PXCache cache,
PXFieldUpdatedEventArgs e)

{}

public virtual void DAC_RowInserting(PXCache cache,
PXRowInsertingEventArgs e)

{}

Generic (Recommended):
public virtual void _(Events.FieldUpdated<DAC, DAC.field> e)
{}

public virtual void _(Events.RowInserting<DAC> e)

{}

-ing events (e.g. FieldDefaulting, RowUpdating):

- Graph handlers first, then attribute handlers
« Graph handlers can cancel execution of attribute handlers by
setting e.Cancel= true

-ed events (e.g. FieldUpdated, RowUpdated):

« Attribute handlers first, then graph handlers
« One typically can’t cancel anything in graph

RowSelected Event:

* RowSelected occurs each time a data record is displayed in
the UL.

* When one sets the Current property of a PXCache object.

* The best place to configure the Ul based on the values of data
fields.

* However, note that RowSelectedis fired several times for a
record during each round trip and it is the worst place to read
data from the database.

Acumatica

Step 2.6: Testing the Customized Form

Ul Element (Location) First Modified Record Second Modified

Third Modified Record

Record
Inventory ID (Summary BAT3310 BAT3310EX
area)
Repair Item (Item Selected Selected

Defaults section
of the General tab)

Repair Item Type (Item Battery Battery
Defaults

section of the General

tab)

BCOV3310

Selected

Back Cover

Acumatica

Lesson Summary

In this lesson, you have learned how to create a control so that you can display on a form a
custom field bound to the database. To implement this customization, you have learned how to
add the necessary modifications to a customization project and how to publish the project to apply
the changes to the system.

As you have completed the lesson, you have added the following elements to the
PhoneRepairShop customization project:

» Two column definitions in the Inventoryltem table of the database.

» Two custom field declarations in the extension of the IN.Inventoryltem data access class (in the
PhoneRepairShop Code extension library).

» Two controls to display the custom fields on the Stock Items (IN202500) form.

* One custom event handler, which you have added to the InventoryltemMaint graph. You have
used the RowSelected event handler to configure the Ul presentation logic.

Acumatica

Lesson Summary

Addition of New Custom Elements

Website

IN202500.aspx
page

General
tab jtam

— s graph

Repair item
check box

Repair Item Type
box |

Application

InventoryltemMaint ©/INInventoryitem

¢ data access class
E HemSettings E
L | dara view]
i]
i INLInventoryitem i InventoryltemEsxt
DAC reference] DH&C E::eynsiun
' ' UsrRepairltem
; | field
UsrRepairltemType
] |] field
i InventoryltemMaint_Extension i
| graph extension]
5 RowSelected 5
] <Inventoryltem=]
. event handler]

Database

/Inventoryltem
——»table

UsrRepairttem
column

UsrRepairltemType
column

LEGEND

Mew custom elements

b D Other elements

@ Acumatica

The Cloud ERP

Recap of Day 1

1. Learnt about Customization projects, Extension Library, Acumatica Customization Platform and Application
Architecture.

2. Created a new Customization Project, Loaded items from a folder, Bound it to an existing extension library,
Published the Customization project to apply the changes to the instance.

3. Inspect Element properties for Stock Items screen and customized Inventoryltem DAC and added
UsrRepairItem field and added the checkbox control in Stock Items form using Screen Editor.

4. Added another field UsrRepairItemType to InventoryltemExt, a custom column to Inventoryltem table though
Database Scripts and created a combo box control in Stock Items form using Screen Editor.

5. Learnt about Event Handlers, Acuminator warnings and errors.

6. Added RowSelected event from Screen Editor > Events. And moved the InventoryltemMaint_Extension to the
Extension library.

7. Added Enabled property to false in PXUIField attribute of UsrRepairItemType field.

8. Modified the classic Handler to Generic Handler type. And added the condition to enable the
UsrRepairItemType only if the UsrRepairItem valueis true.

Acumatica

Lesson 3: Implementing the Update and Validation of Field Values

Learning Objectives
In this lesson, you will learn how to do the following:
» Update the fields of a data record on update of a field of this record

» Validate the value of a field that does not depend on the values of other fields of the same record

Acumatica

Changes to be Implemented

« Modify the Business logic of Services and Prices (RS203000) form and Repair Work Orders (RS301000) forms.

« In Repair tab of the Services and Prices (RS203000) form — if an Inventory ID is selected, the values in Repair
Item Type and Price must be filled from Repair Item Type and Base Price from Stock Items (IN202500) form.

« In Labor tab of the Repair Work Orders (RS301000) form — the values are automatically filled from Services and
Prices (RS203000) form and the Quantity column must be validated to fulfill the below conditions:

Must be greater than or equal to zero.

Must be greater than or equal to the Quantity column in the Labor tab of Services and Prices form with same Inventory ID,
Service ID and Device ID.

Show error when lesser than zero.

Display warning and automatically change the value when lesser than the value in Labor tab of the Services and Prices form.

Acumatica

Step 3.1: Updating Fields of a Record on Update of a Field of This Record (with
FieldUpdated and FieldDefaulting)

In Services and Prices (RS203000) form, when the RSSVRepairItem.InventoryID value is
changed, will copy the RSSVRepairItem.BasePrice and RSSVRepairItem.RepairItemType
values from the stock item record that has the ID equal to the new RSSVRepairItem.InventoryID

value.

In RSSVRepairPriceMaint graph, we will add
« FieldUpdated event handler for RSSVRepairItem.InventoryID field to update:
RSSVRepairItem.RepairItemType — by calling SetvValueExt<field> to assign value.
RSSVRepairItem.BasePrice —trigger FieldDefaulting event by calling SetDefaultExt<field> and assign value.
+ FieldDefaulting event handler for RSSVRepairItem.BasePrice to setthe base price

RSSVRepairItem.BasePrice - findthe InventoryItemand corresponding InventoryItemCurySettings to getthe base
price of an inventory item and set to NewValue.

PXSelectorAttribute.Select<>() method — to select a stock item with InventoryID from the
updated field using the BQL query from PXSelector on the specific field.

PK.Find () method — used to select a record based on the values of the key fields and can be used
when a primary key is defined for a DAC.

Enable callback for the control in the RS203000.aspx by setting CommitChanges property to True for
the InventoryID control of Repair Items tab. Acumatica

Introduction to BQL BQL — Querying Data

Is a part of Acumatica Data Access Layer Passing Parameters from the code — Required:

Is mapped to SQL queries
.)] foreach(Product record in SelectFrom<Product>
Hides the underlying database engine Where<Product.isActive.IsEqual<@P.AsBool>>

S .View.Select(this, true));
Is checked at compile time lew ct(thi ue))

Com'es with a variety of clauses allowing to express most DB p,ameter value from context - Current:
queries
Product record = SelectFrom<Product>.
Where<Product.productid

.IsEqual<Tran.productid.FromCurrent>>
.View.Select(this);

Some Common BQL Clauses

Optional value in a query:

Where<> . SelectFrom<>.View .
public SelectFrom<Document>.
. Where<Document.docType.IsEqual<Document.doctype
Innerjoin<>.0On<> + SelectFrom<>.OrderBy<>.View AsOptionals>.View zzceiptz' yp
. . 5
OrderBy<> . SelectFrom<>. [Joins] .View
GroupBy<> . SelectFrom<>. [Joins] .AggregateTo<>.V

iew.ReadOnly

. SelectFrom<>.Where<>.0rderBy<>.View.
ReadOnly Acumatica

Comparison of Fluent BQL, Traditional BQL, and LINQ

Characteristic Fluent BQL Traditional BQL LINQ
The gueries can be used to define data views in graphs. Yeas Yes Mo
The gueries can be defined in code. Yeas Yes Yeas
The gueries can be defined in DAC field attributes. Yes Yes Mo
DACs are used to define database tables in the gueries. Yeas Yes Yeas
The gueries can be used for dynamic gquery building. Yeas Yes Yeas
The gueries can be parsed and modified by the direct use of Mo Yes Mo

reflection—that is, by Type.GetGenerichrgumsnts () .
Clauses (such as Join, Where, Aggregate, OrderBy, and On) Mo, but you can pass fluent Yes Mo
can be used separately of the query. BQL expressions to

traditional BQL clauses

The guery language includes numbered classes (such as MNo Yes Mo
Select? and 5electé).

Each subsequent element of the query is passed as a generic Mo Yes Mo
parameter of the previous one.

To create a query, a developer needs fo select a suitable MNo Yes Mo
command overload.

IntelliSense can offer continuaiions that are relevant for the Yes Mo Yes
current query state.

The gueries use strongly typed expressions, which makes Yeas No Yeas
compile-time type checks possible.

The gueries can contain explicit brackets in conditions. Yes MNo; the Where clause can be Yes
used instead

“ou can specify particular columns of the tables to be selected. Yeas; you have to use Yes; you have to use Yeas

PXFieldScope PXFieldScaope Acumatica

The guery is not executed until it is iterated over. Yes Yes Yes

Step 3.2: Validating an Independent Field Value (with FieldVerifying)

In Repair Work Orders (RS301000) form, in the associated graph - RSSVWorkOrderEntry,
FieldvVerifying eventis added to validate the Quantity as below:

« When RSSVIWorkOrderLabor.Quantity <0, throw an exception using
PXSetPropertyException and cancel the assignment of the new value

« When RSSVIWorkOrderLabor.Quantity >0 butsmallerthan RSSVLabor.Quantity value
(set from Services and Prices form), attach the exception as warning to

RSSVWorkOrderLabor.Quantity field using RaiseExceptionHandling<> which will
prevent the saving of the record.

« Retrieve the default labor item related to the work order labor using Fluent BQL statement —
SelectFrom<RSSVLabor> using RSSVWorkOrder.ServicelD,

RSSVWorkOrder.DevicelID and RSSVWorkOrderLabor.InventoryID.

In the Screen Editor or ASPX code, set CommitChanges is set to True for the Quantity field in the
grid of Labor tab of Repair Work Orders (RS301000) form.

Acumatica

Figure: The error for a negative value

Repair Work Orders

000001 - Battery Replacement

« 8 A

Order Nbr.
Status:
* Date Created:

Date Completed

Priority
REPAIR ITEMS
o + X

B @ DO Inventory ID

4 @ 0O CONSULT

O+ W R KK

000001 pel * Customer ID
On Hold * Service:
3/3/2022 - * Device:
Assignes
Medium - Description
©LABOR
- X
Description
Consulting service

> >l

C000000001 - Jersey Central Office E O
BATTERYREPLACE - Battery Replace O
NOKIA3310 - Nokia 3310 b

P

Default Price Quantity

500 © -1.00

The value in the Quantity column cannot be

negative.

[NOTES

Order Total

Invoice Nbr.:

Ext. Price

5.00

FILES

CUSTOMIZATION

35.00

TOOLS ~

Acumatica

Figure: The warning message

Repair Work QOrders

000001 - Battery Replacement

« 0 B

* Order Nbr.
Status
* Date Created:

Date Completed:

Priority
REPAIR ITEMS
o + X

B @ D Inventory ID

< © DO CONSULT

o+ W R K<

000001 P * Customer 1D
On Hold * Service:
3/3/2022 - * Device
Assignee
Medium - Description
P LABOR
- X

Description

Consulting ser

3 NOTES FILES CUSTOMIZATION
> >l
C000000001 - Jersey Central Office E 2 Order Total 35.00
BATTERYREPLACE - Battery Replace O Invoice Nbr.:
NOKIA3310 - Nokia 3310 0
0
Default Price Quantity

Ext. Price

500 @ 100 5.00 |

The value in the Quantity column
has been corrected to the minimum possible
value.

TOOLS -

Acumatica

Q Acumatica 62

The Cloud ERP

Lesson Summary

In this lesson, you have defined the business logic scenarios on the Repair Items tab of the
Services and Prices (RS203000) form and on the Labor tab of the Repair Work Orders
(RS301000) form.

You have used the FieldUpdated and FieldDefaulting event handlers to modify the values of a
detail record on update of the Inventory ID column of this detail record. In the FieldUpdated event
handler, you have used the PXSelectorAttribute.Select<>() method to obtain the stock item record
with the inventory ID selected in the updated field.

To verify the value of a field that does not depend on other fields of the same record, you have
used the FieldVerifying event handler. In this event handler, you have thrown an exception by
using PXSetPropertyException to display an error and cancel the assignment of the new value. To
display a warning, you have attached the exception to the field by using the
RaiseExceptionHandling method.

Acumatica

Lesson Summary

LEGEND

The update of BasePrice and RepairliemType on the update of InventorylD

Implementation of the Update and Verification of a Field Value Verification of the field value that doss not depend en other fislds of the same record

D Other elements

Website Application

RS203000.aspx page RSSVRepairPriceMaint graph

i Repair ltems E PXCache<RSSVRepairitem>
i fah lem ; Modified record

i Inventery 1D column H) .

i [FieldUpdated<RSSVRepairitem,

CommitChanges="True" RSSVRepairltem.inventorylD> RepairittemType field
| [event handler

i ' FieldDefaulting<RSSVRepairltem,

i : RSSVRepairltem.basePrice> BasePrice field

\ [event handler

RS301000.aspx page RSSVWorkOrderEntry graph
[Labor 1ab item PXCache<RSSVWarkOrderLabor> |
& Current record
STy T FieldVeritying<RSSVWorkOrderLabor, ‘

CommitChanges="Trus"

RSSVWorkOrderLabor.quantity> event Warning Quantity field
handler ‘

Error

@ Acumatica 64

The Cloud ERP

Lesson 4: Creating an Acumatica ERP Entity Corresponding to a Custom Entity

Learning Objectives

In this lesson, you will learn how to implement an asynchronous operation by using the
PXLongOperation class.

Acumatica

Step 4.1: Performing Preliminary Steps

1.

In Enable/Disable Features (CS10000) form, enable/check the Advanced SO Invoices feature — to enable the
addition of a stock item directly to an SO Invoice without processing sales orders and shipments.

On the Item Classes (IN201000) form, in the Item Class Tree, select STOCKITEM.
On the General tab (General Settings section), select the Allow Negative Quantity check box.

On the form toolbar, click Save.

Acumatica

Figure: Item Classes form

Iltem Classes

B v© 4+ w @G- K < > 3

RESTRICTION GROUPS

STOCKITEM - Stock item

Stock item

ATTRIBUTES

Stock ltem

Allow Negative Quantity

Item Class Tree 4
L& LABOR™** Labor * Class ID:
i NSTOCKITEM Non-stock item Description:
: |g STOCKITEM* Stock item
GENERAL
GENERAL SETTINGS
ltem Type

Valuation Method:
Tax Category
Posting Class:
Price Class
Default Warehouse:
* Availability Calculation ...
Country Of Origin
SHIPPING THRESHOLDS
Undership Threshold (%):
Qvership Threshold (%):

Accrue Cost
Finished Good
Average
EXEMPT - Exempt
STOCKITEM - Stock item

STOCKITEM

v o v o o Yo

100.00
100.00

A A N N NN

[NOTES ACTIVITIES FILES CUSTOMIZATION TOOLS ~

UNIT OF MEASURE
* Base Unit: PIECE p 7z Divisible Unit
* Sales Unit PIECE o 7 Divisible Unit
* Purchase Unit: PIECE Lz Divisible Unit

o +

*From Multiply/Divid: Conversion To Unit
Unit Factor

PRICE MANAGEMENT

Price Workgro.. 0o

Price Manager D 7

Min. Markup %: 0.00

@ Acumatica 67

The Cloud ERP

Step 4.2: Defining the Logic of Creating an SO Invoice

In RSSVWorkOrderEntry graph, will add the CreateInvoice static method to create SO Invoice for the current

work order.
1.

Define a PXTransactionScope —to save data from multiple graphs and avoid incomplete data being saved in case of any
errors.

Create an instance of SOInvoiceEntry graph using PXGraph.CreateInstance<SOInvoiceEntry> () and
initialize the summary (Document view of SOInvoiceEntry) of the Invoice.

Create an instance of RSSVWorkOrderEntry graph and assign the workOrder to Current Workorder.

Add the lines (Transactions view) associated with the repair items from the Repair Items tab (RepairItems view).
Add the lines (Transactions view) associated with labor from the Labor tab (Labor view).

Save the invoice to the database by calling Actions.PressSave () orActions.Save.Press ().

Assign the generated invoice number and save the changes.

Complete/Close the PXTransactionScope.

Acumatica

Step 4.3: Defining the Create Invoice Action

1. Inthe RSSVWorkOrderEntry graph, will define the CreateInvoiceAction action, which adds the Create
Invoice command to the More menu (under Other), adds the button with the same name on the form toolbar using
PXAction<RSSVWorkOrder> CreatelInvoiceAction.

2. Inside the action, populate a local list variable to contain the list of all workorders (RSSVWorkOrder).

3. Trigger the Save action to save changes to the database by calling Actions.PressSave ().

4. Getthe Current WorkOrder and pass it as a parameter to CreateInvoice method.

5. Surround the invocation to CreateInvoice by PXLongOperation.StartOperation () to create an invoice
for the current workorder asynchronously in a separate thread to process the long running operations.

Acumatica

Step 4.4: Defining the Visibility and Availability of the Create Invoice Action

For a repair work order, a user should be able to create an invoice only after the work order has been completed i.e.,
Create Invoice button should be visible only for work order with Completed status. And only one invoice can be created
for a work order i.e., after the successful creation of the invoice, the button and command should be disabled.

In RSSVWorkOrderEntry graph, add RowSelected<RSSVWorkOrder> eventis added.

Inside the RowSelected event,

1. Willmake the CreateInvoiceAction visible only when the Current WorkOrder Status is Completed — by calling
SetVisible () method.

2. Willmake the CreateInvoiceAction enabled only when the Current WorkOrder Status is Completed and InvoiceNbr
is empty (i.e., no invoice has been generated yet) — by calling SetEnabled () method.

Acumatica

Step 4.5: Testing the Create Invoice Action

=

Open Repair Work Orders (RS301000) form.

2. Open 000001 repair work order.

3. On the form toolbar, click Remove Hold — to change status from Hold to Ready for Assignment.
4. On the form toolbar, click Assign — to change the status to Assigned.

5. On the form toolbar, click Complete — to change the status to Completed.

6. Now, notice that Create Invoice button/action is visible, click Create Invoice.

7. Notice that the Invoice Nbr. box is having the value of the newly created SO Invoice.

Acumatica

Figure: Creation of an SO invoice

Repair Work Crders

000001 - Battery Replacement

Order Nbr.: 000001 o Customer ID: C000000001 - Jersey Central Office Equi

Status: Completed Service: BATTERYREFLACE - Battery Replacems
* Date Created: 5172020 ~ Device: NOKIA3310 - Nokia 3310

Date Completed: 11/16/2021 Assignee: Andrews, Michael 2

Priority: Medium - Description: Battery replacement, Nokia 3310

REPAIR ITEMS LABOR

O 4+ 7 X A K

B U 0O Repairltem Type Inventory 1D Description Price
> @ [BackCover BCOWV3310 Back cover for Nokia 3310 10.00
U [Battery BAT3310 Battery for Nokia 3310 20.00

3 NOT]

(" Executing. Press to abort

CANCEL

Order Total:

Invoice Nbr.:

40.00

Acumatica

Figure: Update of the Invoice Nbr box

'ﬁf E it Repair Work Orders i NO
avortes 000001 - Battery Replacement b (©) The operation has ~
completed.
“ a 4+ W 0~ Ko< > ol
(9 Data Views
A
Order Nbr.: 000001 jol Customer |D: C000000001 - Jersey Central Office Equi Order Total: 40.00
D Phone Repair Shop Status: Complated Service BATTERYREPLACE - Battery Replaceme Invoice Mbr.: INV000043
= Date Created 51172020 ~ Device: NOKIA3310 - Nokia 3310
@ Time and Expenses Date Completed: 11/16/2021 Assignee: Andrews, Michael 2
Priority: Medium - Description Battery replacement, Nokia 3310
Finance
REPAIR ITEMS LABOR
S Banking o + 7 x H HE
O Repair ltem Type Inventory 1D Description Price
Payables
@ by > B [Back Cover BCOV3310 Back cover for Nokia 3310 10.00
U [Battery BAT3310 Battery for Nokia 3310 20.00
@ Receivables
Sales Orders
E Purchases
e <
[E) Your product is in trial mode. Only two concurrent users are allowed. TIVATE
@ Acumatica 73

The Cloud ERP

Q Acumatica 74

The Cloud ERP

Lesson Summary

In this lesson, you have learned how to initiate an asynchronous operation inside an action
method by using the PXLongOperation class. Also, you have implemented the creation of an SO
invoice based on a repair work order by doing the following in the RSSVWorkOrderEntry graph:

* Defining the static Createlnvoice method, which creates an instance of the SOInvoiceEntry graph

* Defining the Create Invoice button on the form toolbar and the command with the same name on
the More menu; the underlying action initiates the asynchronous execution of the Createlnvoice
method by using the PXLongOperation class

» Specifying the availability of the Create Invoice action in the RowSelected event handler so that
only a single invoice can be created for a repair work order

Acumatica

Lesson Summary

Website

RS301000 form

Form toolbar

Create Invoice bution

Implementation of the Action

RSSVWorkOrderEntry graph

CreatelnvoiceAction action

PXLongOperation.StanOperation
method

Createlnvoice method

PXCache=RS5VWorkOrder=

InvoiceNbr field

RowSelected<RSSVWorkOrder>
event handler

CreatelnvoiceAction.SetVisible
method

CreatelnvoiceAction. SetEnabled
method

Application

SOInveoiceEntry graph

PXCache<ARInvoice>

Mew recard

PXCache<ARTran>

Mew records

Implementation of the action

Qher elemants

@ Acumatica

The Cloud ERP

76

Lesson 5: Deriving the Value of a Custom Field from Another Entity

Learning Objectives

In this lesson, you will learn how to do derive the value for a custom field from another form.

Acumatica

Step 5.1: Adding a Custom Field to the Payments and Applications Form

1. In Payments and Applications (AR302000) form, add a Prepayment Percent box to the form.

2. Add acolumn UsrPrepaymentPercent to ARPayment table with same parameters as PrepaymentPercent
field in RSSVSetup table and the datatype is set to decimal (9, 6) .

3. Create an extension for ARPayment oOr ARRegister DAC and add UsrPrepaymentPercent field.

4. Inthe Screen Editor, create checkbox control for UsrPrepaymentPercent in the Summary area of Payments
and Applications form.

5. Correct the width for the Prepayment Percent label. To do this, in the Column element that is the parent to the
Prepayment Percent element, for the LabelsWidth property, specify the M value.

6. Publish the customization project.

Acumatica

Figure: Prepayment Percent element

ustomization Project Editor

LAYOUT PROPERTIES ATTRIBUTES

File Publish Extension Library Source Control
PhoneRepairShop 4 Screen Editor: AR302000 (Payments and Applications)
» SCREENS Cel EDIT ASPX PREVIEW CHANGES
v IN202500 o m-
» R5101000 » EP DataSource: ARPaymentEntry
» RS201000 & stie O
» RS202000 ~ & Form: Document Override
» RS203000
v & Column .
» RS301000 v (3 Column
Data Access + & Column
Code - @ Column
Fies (23) ROT or RUT payment

Generic Inquiries (3)

Prepayment Percent

Reports

style
Dashboards
) » 9 Grid: docsTemplate
Site Map (6)
v B Tab

Database Scripts (12)
System Locales ' Dialogs
Import/Export Scenarios

Sharad Filters (1)

Access Rights

Wikis.

Web Service Endpoints

Analytical Reports

Push Notifications

Business Events

Mobile Application

User-Defined Fields

Webhooks

Connected Applications

Y

Property

Base Properties
CommitChanges
DataField

ID

Size

SkinlD

Ext Properties
AlreadyLocalized
AutoCallBack
DisableSpellcheck
DisplayFormat
Enabled
LabelWidth
LinkCommand
LocalizationInfo
SuppresslLabsl
SyncStateWithCommand
Width

TS ADD CONTROLS

Value

UsrPrepaymentPercent

CstPXNumberEdit1

»

@ Acumatica

The Cloud ERP

79

Step 5.2: Deriving the Default Value of the PrepaymentPercent Field

To populate the UsrPrepaymentPercent field of the ARPayment extension when a payment is created, we
can use either of the below:

1. FieldDefaulting event
2. PXDefault attribute

FieldDefaulting event:

1. Create an extension of ARPaymentEntry graph andadd FieldDefaulting event for
UsrPrepaymentPercent field of ARPayment extension.

2. Returnthe PrepaymentPercent value from RSSVSetup record selected using BQL as NewValue after
checking for null to avoid Nul1ReferenceException.

PXDefault attribute:

1. Add PXDefault attribute with the type from RSSVSetup field and SourceFieldis setas
RSSVSetup.prepaymentPercent fieldto UsrPrepaymentPercent fieldin ARPayment DAC
extension.

Acumatica

Step 5.3: Testing the Deriving of the Field Value

1. Onthe Invoices (SO303000) form, open the INV0O00049 invoice (created during previous steps).

2. Release the invoice by typing 40 in the Amount box of the Summary area -> Remove Hold -> Release.

3. From More menu (Processing) -> Pay to open Payments and Applications (AR302000) form and in the
Summary area, notice the Prepayment Percent box has a value of 10 from Repair Work Order Preferences

(RS101000) form.

4. Save the payment.

Acumatica

Figure: The Prepayment

Payments and Applications

Payment - Jersey Central Office Equip
« 9 [9 + @ 0~ Ko< >

Type: Payment - Customer:
Reference Nbr.: | <NEW> el Payment Meth . CHECK - Check Payment §]
Status: On Hold Card/Account ..

» Application Date: 11/16/2021 ~ * Cash Account:
11-2021 ol

000001

* Application Pe...

* Payment Ref.:

Description:

DOCUMENTS TO APPLY SALES ORDERS

) + x LOAD DOCUMENTS AUTO APPLY [—=|
B o O Branch Doc. Type *Reference Nbr.
> B 0O YOGIFON Invoice INV000049

C000000001 - Jersey Central Office Equi 27

102000-YOGI - Checking Account el

APPLICATION HISTORY

Percent box

21 REMOVE HOLD

Payment Amo.

Applied to Doc...

Applied to Ord....

Available Bala..

Write-Off Amo...

Finance Charg...

Deducted Cha

FINANCIAL APPROVALS
Amount Paid Cash
Discount
Taken

40.00 0.00

CHARGES

Amount

0.00

4000 O

4

Code

0.00
0.00
0.00
0.00
0.00
0.00

Write-Off Write-Off Reason

ACTIVITIES FILES CUSTOMIZATION TOOLS -
Prepayment Percent: 10.00
Date Due Date Cash Cross Ra
Discount
Date
1116/2021 1216/2021 111672021 1.0000000

@ Acumatica

The Cloud ERP

82

Lesson Summary

In this lesson, you created a custom field on the Payments and Applications (AR302000) form and
learned how to assign its default value, which is derived from another entity. To assign a default
value for a custom entity, you have done the following:

1. Defined the extension of a graph in which the field is initialized

2. In the graph extension, defined the FieldDefaulting event handler for the custom field

Acumatica

Lesson Summary

Deriving of a Field Value from Another Entity

Website

AR302000.aspx page

Prepayment Percent box

Implementation of the action

D D Other elements

Application

ARPaymentEntry Extension
graph extension

FieldDefaulting<ARPayment,
ARPaymentExt.usrPrepaymentPercent>

event handler

Database
PXCache<RSSVSetup> ARPayment
table
PrepaymentPercent field UsrPrepaymentPercent
column
ARPaymentExt

DAC extension

UsrPrepaymentPercent field

Acumatica

Lesson 6: Debugging Customization Code

Learning Objectives

In this lesson, you will learn how to debug the source code of Acumatica ERP.

Acumatica

Useful Development Environment Optimization

Web.config: M e e
ST T TS When' thie énvironment
£.50.50SetupMaint_Extension IS SIOW‘KD@K'M@W- € >

order = orderMaint.Document .Update (order);

s 8 X

- Enable Debug Web Site - <compilation debug="True" ... />

order. CustomerReflibr = -NewGuid() . Tostring();
order. CustomerOrderhibr _NewGuid().ToString();
order.OrderDesc = “Test Order™;
orderMaint . Document . Update(order) ;

- Optimize Compilation - <compilation OptimizeCompilations="True" ... />

Program Files (86]\Acumatica ERPVACU_S30\ Property Pages ? |
& Buld Web Site
Rigcosss Start action (F5) 1 © Publish Web Site
Scope to This

No Build -

[New Solution Explorer View

- Show Automations - <add key="AutomationDebug" value="True" /> Surt Optors

MSBuild Options i
Siveright Appications | | 2r9et Framework Add Reference—

NET Framework 4.5.1 - Add Service Reference...
) : %S View Class Diagram
"y " " " e B Manage NuGet Packages
- Ignore Scheduler - <add key="DisableScheduleProcessor" value="True" /> 5 S
Enable Code Anayis y
= i Start Options...
Accesibity vadaion $ ihun
Include accessibility validation when buiding page Use IIS Express.
.. . Include accessibility validation when buiding web & Viewin Browser (Maxthon Cloud Browser)
- Optimize Start-up - <add key="InstantiateAllCaches" value="False" /> @ Viw i Pge specr cutvk cutes
. rowse With_
f@ Acumatica ERP { =l = ﬁ @ Refresh Folder
) 6 Add Solution to Source Control.
s
A . Main Software Configuration ¥ cu Crin
- Optimize Start-up - <add key="CompilePages" value="False" />
X Remove Del
€ Open Folder in Fée Explorer
The Acumatica ERP installer willinstall all the necessary software components. Please be aware g —— e
. . _n . . " _u " that the software must be configured before use. The Acumatica ERP Configuration wizard will be e, M
- Enable Auto Va|ldatI0n - <a.dd key— PageVahdatIOI’l Value— True /> started automatically after the installation is finished. If you wish to configure the software later. please 2 I Propert) Pagex S eEs
uncheck the oplion below. The Configuralion wizard will be accessible under the Programs menu Run Code Ansyss oo Web Ste
[¥] Launch the Acumatica ERP C wizard. (R

[7Install Report Designer

[7]Install Debugger Tools I

To Debug
Acumatica

Cancel | [<Back | [Nem»

Useful Development Environment Optimization

“Acuminator’” Extension

Static code analysis, colorizer and
suggestions tool for Acumatica

Framework

“Attach To” Extension

Attach Debugger to Acumatica
with 1-click

TEST DOTTRACE __ANALYZE _WINDOW HELP

A _} [1] Attach ToTIS

. GETSTARTED __ LATEST NEWS

lates

Sort by: Relevance

EZ7| AttachTo (v} I
E‘@ Adds "Attach to IIS/IIS Express/NUnit" commands to Tools menu. o
er:

tudio Gallery
Dov

‘ch Results
rale " AttarhTa.Navt

Acumatica

Step 6.1: Debugging the Acumatica ERP Source Code

1. Make sure the Acumatica program database (PDB) files are in the Bin folder of the Acumatica ERP instance folder
that you use for the training course (for example, in PhoneRepairShop\Bin). PDB files are copied when Install
Debugger Tools option is checked during installation from Acumatica Configuration Wizard. A PDB file contains
the link between compiler instructions and some lines in source code.

2. Configure the web.config file, in <system.web> tag and set <compilation debug="True" ...> and
Save.

3. InVisual Studio, open the PhoneRepairShop Code solution, which includes both the PhoneRepairShop Code
project and the PhoneRepairShop website.

4. In the Visual Studio’s main menu, select Tools > Options > Debugging > General > Enable Just My Code.

5. Inthe Debugging > Symbols section, in the Symbols file (.pdb) locations list, add the path to the location of the
PDB files of the instance and click OK.

Acumatica

Figure: Clearing the Enable Just My Code check box

Options 7 =
Search Options (Ctrl+E) O General
Tabs and Windows ~ [7] Ask before deleting all breakpoints ~
Task List Break all processes when one process breaks
Trust Settings [] Break when exceptions cross AppDomain or managed/native boundaries (M:
Web Browser Enable address-level debugging
I+ Projects and Solutions [] Show disassembly if source is not available
[Source Control Enable breakpoint filkers
- Work [tems Use the new Exception Helper
b Tesxt Editor (] Enable Just My Code |
4 [Debugging Warn if no user code on launch (Managed only)
[Enable .MET Framework source stepping
Just-In-Time Step over properties and operaters (Managed only)
Output Window Enable property evaluation and other implicit function calls
Symbols Call string-conversion function on objects in variables windows
I Performance Tools [] Enable source server support
- Acuminator Print source server diagnostic messages to the Cutput window v
[Azure Service Authentication = Alloses ovizre comsne for machial fouck oocowen blice (B Aol ol N
[(EDntai_rTer_'I'nals o

Acumatica

Step 6.1: Debugging the Acumatica ERP Source Code (Contd..)

1. In Visual Studio, open the Acumatica ERP source code files. For the PhoneRepairShop instance, all files are in
the PhoneRepairShop/App Data/CodeRepository folder.

2. Inthe Solution Explorer, select PhoneRepairShop > App_Data > CodeRepository > PX.Objects > AR >
ARPaymentEntry.cs, and go to the definition of the TEnumerable Release (PXAdapter adapter) method.

3. Add a breakpoint inside the Release method.
4. Attach the Visual Studio debugger to the w3wp.exe process.

5. Start debugging by navigating to Payments and Applications form, creating a payment and clicking Release
button — in turn invoking the Release method.

Acumatica

Figure: Viewing the source code of the Release action

ARPaymentEntry.cs & X ~ Salution Explorer
@Q_App_Data_CodeRepos\tory_PX.Obj:cts_AR_ARPaymentEntry‘cs - #g PX.Objects.AR.ARPaymentEntry - @ Release(PXAdapter adapter) - o-5 ¢ Tk M-

graph = .CreateInstance< 5005 =
M MigrationMode

graph.Filter.Current.CustomerID = customer.Current.BAccountID;
graph.Filter.Select();
throw PXRedirectRequiredException(graph, "Customer Details");

H

Ml ReconciliatienTools
Ml Repositories

Ml Retainage

M Utility

return adapter.Get();

[PXProcessButton]

[ARMigrationModeDependentActionRestriction(
restrictInMigrationMode: -
restrictForRegularDocumentInMigrationMode: -

restrictForUnreleasedMigratedDocumentInNormalMode:

IEnumerable heleasé(PXAdapier adapter)

PXCache cache = Document.Cache;
List<ARRegister> list = List<ARRegister>();
foreach (ARPayment ardoc in adapter.Get<ARPayment>())

if (1 Jardoc .Hold)

cache .Update(ardoc);
list.Add(ardoc);

if (list.Count == 8)
{
throw PXException(Messages.Document Status_Invalid);

¥

Sawva Praccfl)-
o

[PXUIField(DisplayName = "Release", MapEnableRights = PXCacheRights._Update, MapViewRights = PXCacheRights.Update)]

ARAccess.cs
ARAutoApplyPayments.cs
ARCashSaleEntry.cs
ARChargelnvoice.cs
ARClosingProcess.cs
ARCustomerBalanceEng.cs

ARCustomerCreditHoldProcess.cs

ARDiscountMaint.cs
ARDiscountSequenceMaint.cs
ARDocumentEng.cs
ARDocumentRelease.cs

ARDunningletterByCustomerEng.cs
ARDunningletterByDocumentEng.c

ARDunninglLetterMaint.cs
ARDunningLetterPrint.cs
ARDunningLetterProcess.cs
ARExpiringCardsEng.cs
ARExpiringCardsProcess.cs
ARExternalTaxCalc.cs
ARFinChargesApplyMaint.cs
ARFinChargesMaint.cs
ARIntegrityCheck.cs
ARInvoiceEntry.cs
ARPaymentEntry.cs
ARPPDCreditMemoProcess.cs
ARPriceClassMaint.cs
ARPriceWorksheetMaint.cs
ARPrintlnvoices.cs
ARRetainageRelease.cs
ARSalesPriceMaint.cs

= ARSalesPriceTemp.cs

Acumatica

Lesson Summary

In this lesson, you have learned how to debug the code of Acumatica ERP by using program
database (PDB) files.

Acumatica

Thank you!

Vidhyalakshmi Hariharasubramanian

	Slide 1: T190 Quick Start in Customization
	Slide 2: Timing and Agenda
	Slide 3
	Slide 4
	Slide 5: Introduction – Customization Project
	Slide 6: Introduction - Customization Projects
	Slide 7: Introduction – Application Architecture
	Slide 8: Querying of the Data
	Slide 9
	Slide 10: Company Story - Smart Fix company
	Slide 11: Lesson 1: Creating a Customization Project
	Slide 12: Step 1.1 and 1.2: Creating a Customization Project and Loading Items to the Customization Project
	Slide 13: Figure: Items of the customization project
	Slide 14: Demo
	Slide 15
	Slide 16: Introduction - Extension Libraries
	Slide 17: More about Extension Libraries
	Slide 18: Step 1.3 : Binding the Extension Library
	Slide 19: Step 1.4: Publishing the Customization Project
	Slide 20: Step 1.5: Reviewing the changes in Acumatica ERP
	Slide 21: Figure: The Phone Repair Shop workspace
	Slide 22: Figure: The Repair Services custom form
	Slide 23: Demo
	Slide 24: Lesson Summary
	Slide 25: Lesson 2: Creating Custom Fields
	Slide 26: Purpose
	Slide 27
	Slide 28: Acumatica Customization Platform – An Overview
	Slide 29: Acumatica Customization Platform – An Overview (Contd..)
	Slide 30: Step 2.1: Creating a custom column and field with the Project Editor
	Slide 31: Figure: Custom elements to be added to the Stock Items form
	Slide 32: Figure: Customization menu
	Slide 33: Figure: Element Properties dialog box
	Slide 34: Step 2.1: Creating a custom column and field with the Project Editor – Continued..
	Slide 35: Figure: Suppression of the error in a comment
	Slide 36: Step 2.2: Creating a Control for the Custom Field
	Slide 37: Figure: The Type node in the control tree
	Slide 38: Figure: The added control
	Slide 39: Figure: The Repair Item check box
	Slide 40: Demo
	Slide 41: Step 2.3: Creating a Custom Column with the Project Editor and a Custom Field with Visual Studio
	Slide 42: Step 2.4: Creating a control for the Custom Field
	Slide 43: Figure: The Repair Item Type box
	Slide 44: Step 2.5: Making the Custom Field Conditionally Available (with RowSelected)
	Slide 45: Figure: The generation of the event handler
	Slide 46: Figure: The CommitChanges property
	Slide 47: Demo
	Slide 48: More about Event Handlers and RowSelected event
	Slide 49: Step 2.6: Testing the Customized Form
	Slide 50: Lesson Summary
	Slide 51: Lesson Summary
	Slide 52
	Slide 53: Recap of Day 1
	Slide 54: Lesson 3: Implementing the Update and Validation of Field Values
	Slide 55: Changes to be Implemented
	Slide 56: Step 3.1: Updating Fields of a Record on Update of a Field of This Record (with FieldUpdated and FieldDefaulting)
	Slide 57: Introduction to BQL
	Slide 58: Comparison of Fluent BQL, Traditional BQL, and LINQ
	Slide 59: Step 3.2: Validating an Independent Field Value (with FieldVerifying)
	Slide 60: Figure: The error for a negative value
	Slide 61: Figure: The warning message
	Slide 62: Demo
	Slide 63: Lesson Summary
	Slide 64: Lesson Summary
	Slide 65: Lesson 4: Creating an Acumatica ERP Entity Corresponding to a Custom Entity
	Slide 66: Step 4.1: Performing Preliminary Steps
	Slide 67: Figure: Item Classes form
	Slide 68: Step 4.2: Defining the Logic of Creating an SO Invoice
	Slide 69: Step 4.3: Defining the Create Invoice Action
	Slide 70: Step 4.4: Defining the Visibility and Availability of the Create Invoice Action
	Slide 71: Step 4.5: Testing the Create Invoice Action
	Slide 72: Figure: Creation of an SO invoice
	Slide 73: Figure: Update of the Invoice Nbr box
	Slide 74: Demo
	Slide 75: Lesson Summary
	Slide 76: Lesson Summary
	Slide 77: Lesson 5: Deriving the Value of a Custom Field from Another Entity
	Slide 78: Step 5.1: Adding a Custom Field to the Payments and Applications Form
	Slide 79: Figure: Prepayment Percent element
	Slide 80: Step 5.2: Deriving the Default Value of the PrepaymentPercent Field
	Slide 81: Step 5.3: Testing the Deriving of the Field Value
	Slide 82: Figure: The Prepayment Percent box
	Slide 83: Lesson Summary
	Slide 84: Lesson Summary
	Slide 85: Lesson 6: Debugging Customization Code
	Slide 86: Useful Development Environment Optimization
	Slide 87: Useful Development Environment Optimization
	Slide 88: Step 6.1: Debugging the Acumatica ERP Source Code
	Slide 89: Figure: Clearing the Enable Just My Code check box
	Slide 90: Step 6.1: Debugging the Acumatica ERP Source Code (Contd..)
	Slide 91: Figure: Viewing the source code of the Release action
	Slide 92: Lesson Summary
	Slide 93

