
Vidhyalakshmi Hariharasubramanian

Sr. Technical Account Manager

T190 Quick Start in Customization

2

March 23, 2023 -10:00-11:30 AM

Day 1

Lesson 1: Creating a Customization Project

Lesson 2: Creating Custom Fields

March 24, 2023 -10:00-11:30 AM

Day 2

Lesson 3: Implementing the Update and Validation of

Field Values

Lesson 4: Creating an Acumatica ERP Entity

Corresponding to a Custom Entity

Lesson 5: Deriving the Value of a Custom Field from

Another Entity

Lesson 6: Debugging Customization Code

Timing and Agenda

Joe Gibbs Racing
Acumatica Partner

Day 1

Paretta Autosport
Acumatica Partner

Customization Projects

5

Introduction – Customization Project

• A customization project is a set of changes to the user interface, configuration data, and functionality of

Acumatica ERP.

• The customization project holds the changes that have been made for a particular customization, which

might include changes to the mobile site map, generic inquiries, and the properties of UI elements.

• To apply the content of a customization project to an instance of Acumatica ERP, you must publish the

project.

Designing the application involves:

1. Designing Database Structure and DACs – Taking care of naming conventions for Tables (DACs) and

Columns (Fields), deciding Primary Key and relationships, audit fields and other fields for concurrency

control (Tstamp), attachments (NoteID), multitenancy support (CompanyID and CompanyMask), multiple

branch support (BranchID and UsrBranchID).

2. Designing the User Interface – Taking care of naming/numbering of Forms/Reports, designer setup,

item grouping, configuring the aspx and several elements like containers, tabs, layout, etc.

3. Designing Graphs and Event Handlers – deciding on names of graphs and event handlers and graph

suffixes, inserting/updating/deleting data records, saving changes to database, etc.

6

Introduction - Customization Projects

7

1. Data Access Layer - Set of DACs that wrap data

from tables.

2. Business Logic Layer – implemented through

graphs – tied to one or more DACs. Graphs contain

data views (references to the required data access

classes, their relationships, and other meta

information) and business logic (actions and events

associated with the modified data).

3. Presentation Layer - provides access to the

application business logic through the UI, web

services, and Acumatica mobile application. The UI

consists of ASPX webpages (which are based on the

ASP.NET Web Forms technology) and reports

created with Acumatica Report Designer. The ASPX

webpages are bound to graphs.

Introduction – Application Architecture

8

Querying of the Data

• BQL (Business Query Language) – Acumatica’s custom language for writing database queries.

• BQL is written in C# and based on generic class syntax and like SQL.

• Benefits of BQL:

- does not depend on the specifics of the database provider.

- compile-time syntax validation.

• Provides two dialects of BQL: traditional BQL and fluent BQL (short and simple).

BQL SQL

SelectFrom<Product>

.Where<Product.availQty.IsNotNull.

And

<Product.availQty.IsGreater

<Product.bookedQty>>>

SELECT * FROM Product

WHERE Product.AvailQty IS NOT

NULL

AND Product.AvailQty >

Product.BookedQty

Onni Group
Acumatica Customer

Company Story – Smart Fix Company

10

The Smart Fix company specializes in repairing cell phones of several types and can both repair cell phones and sell parts for the repair. The

company provides the following services:

• Battery replacement

• Repair of liquid damage

• Screen repair

Users can create repair work orders to record repair process and sales orders to record sale of the parts associated with a repair. Employees

need to verify the information on both repair work orders and sales orders, including the details of the invoices created for these orders.

The Acumatica ERP instance of the Smart Fix company contains the below custom forms which we will create in other T series of courses:

1. Repair Services maintenance form (RS201000) - will be used to view the list of all services, add a new service, edit an existing service,

and delete a service.

2. Serviced Devices maintenance form (RS202000) - used to view the list of devices that are serviced by the company in a grid.

3. Services and Prices maintenance form (RS203000) – used to define and maintain the prices for each repair service.

4. Repair Work Orders data entry form (RS301000) – used to create and manage individual work orders for repairs.

5. Repair Work Order Preferences setup form (RS101000) – used by an admin user to specify company’s preferences for the repair work

orders.

In this course, we will customize the Stock Items form (IN202500) – to mark a stock item as repair item. And perform the below changes:

• Update of a field value that depends on another field value on the Services and Prices custom maintenance form.

• Validation of a field value on the Repair Work Orders custom data entry form.

• Creation of an SO invoice for a repair work order on the Repair Work Orders form.

Company Story - Smart Fix company

11

Lesson 1: Creating a Customization Project

Learning Objectives:

In this lesson, you will learn how to do the following:

• Create a customization project

• Load a customization project from a local folder

• Bind a customization project to an extension library

• Publish a customization project

12

Creation of a Customization Project:

1. In Acumatica ERP, open the Customization

Projects (SM204505) form.

2. On the form toolbar, click Add Row.

3. In the Project Name column, enter the

customization project name: PhoneRepairShop.

4. On the form toolbar, click Save.

Loading Items:

1. On the Customization Projects (SM204505) form,

click PhoneRepairShop in the table to open the

customization project that you have created.

2. On the menu of the Customization Project Editor,

click Source Control > Open Project from Folder.

3. In the dialog box that opens, specify the path to the

Customization\T190\SourceFiles\PhoneRepairShop

folder, which you have downloaded from Acumatica

GitHub in Initial Configuration, and click OK.

Step 1.1 and 1.2: Creating a Customization Project and Loading Items to the

Customization Project

13

Figure: Items of the customization project

14

Demo

Cherry Lake Tree Farm
Acumatica Customer

Extension Library

16

Introduction - Extension Libraries

An extension library is a Visual Studio project that contains customization code and can be individually developed and

tested.

An extension library .dll file must be in the Bin folder of the website. At run time during the website initialization, all the

.dll files of the folder are loaded into the server memory for use by the Acumatica ERP application.

17

More about Extension Libraries

Factors to decide the necessity of the Extension

Library are:

1. More than five class extensions for business logic

controllers.

2. Will be deployed on more than one system.

3. Will be developed by a team that needs to use a version

control system.

4. To protect the intellectual property of the source code of

the solution.

5. Will be a plug-in for Acumatica ERP.

Two ways to maintain the source code of customization:

1. Keep the code in the customization project

as DAC and Code items.

2. Move the code to an extension library and include the

library in the project as a File item.

To decide about how to work with the code, consider the

following questions:

• How much code will be in the customization project?

• Is there a need for replicability of the customization?

• How many developers will take part in coding?

• Do you need to open the source code in the production

environment?

18

Step 1.3 : Binding the Extension Library

Steps to create an Extension Library:

1. Copy the

Customization\T190\SourceFiles\PhoneRepairShop

_Code folder to the App_Data\Projects folder of the

Acumatica ERP instance that is prepared for this training

course.

2. On the menu of the Customization Project Editor, click

Extension Library > Bind to Existing.

3. In the dialog box that opens, specify the path to the

App_Data\Projects\PhoneRepairShop_Code folder,

and click OK.

4. Open the Visual Studio solution and build the

PhoneRepairShop_Code project.

Files created in Extension Lib Description

PhoneRepairShop_Code.sln Microsoft Visual Studio

Solution file

Solution.bat Windows batch file to open

the website solution Visual

Studio

Solution.lnk Shortcut file to the project

to open the website

solution

folder.lnk Shortcut file to the website

folder

PhoneRepairShop_

Code\PhoneRepairShop_

Code.csproj

Visual C# project file

PhoneRepairShop_Code\Examples.

cs

Visual C# source file that

contains examples of

source code

PhoneRepairShop_

Code\Properties\

AssemblyInfo.cs

Visual C# Source file that

contains general

information about an

assembly

19

Step 1.4: Publishing the Customization Project

To publish the project, do the following:

1. Open the PhoneRepairShop customization project in the Customization Project Editor.

2. Click Files on the left pane of the Customization Project Editor. The Custom Files page opens.

3. On the page toolbar, click Detect Modified Files. Because we have rebuilt the extension library in the
PhoneRepairShop_Code Visual Studio project, the Bin\PhoneRepairShop_Code.dll file has been

modified.

4. In the Modified Files Detected dialog box, which opens, make sure the Selected check box is selected for the
Bin\PhoneRepairShop_Code.dll file, and click Update Customization Project.

5. Close the dialog box.

6. On the menu of the Customization Project Editor, click Publish > Publish Current Project. The Compilation

panel opens, which shows the progress of the publication.

7. Close the Compilation panel when the publication has completed, and the Website updated message is displayed.

20

Step 1.5: Reviewing the changes in Acumatica ERP

1. Open the Acumatica ERP instance and notice the changes in the main menu under Phone Repair Shop

workspace (as shown in the next slide).

2. Open the Repair Services (RS201000) form and review its content and functionality.

3. Open any other forms in the Phone Repair Shop workspace and review their content and functionality.

4. In Microsoft SQL Server Management Studio, connect to the database of the current Acumatica instance and find

the database tables with names starting with RSSV. These are the custom tables added during the publishing of

the customization project.

5. Open the Acumatica ERP instance folder in the file system. Notice the following files and folders:

1. Pages\RS: Contains the ASPX code of the custom forms. The forms have the RS prefix in their IDs. therefore, they are placed

in the custom RS subfolder.

2. InputData: Contains CSV files with the data for the custom tables. This data is inserted in the database by the InputData

customization plug-in, which is included in the customization project.

3. CstPublished\pages_RS: Contains the published code of the custom ASPX pages.

4. Bin\PhoneRepairShop_Code.dll: Contains the customization source code in an extension library.

21

Figure: The Phone Repair Shop workspace

22

Figure: The Repair Services custom form

23

Demo

24

Lesson Summary

In this lesson, you have learned

how to create a customization

project, load content to a

customization project from a

local folder, bind the project to

an extension library, and

publish the project.

The following diagram shows

the changes that have been

applied to the Acumatica ERP

instance for the training course

after the customization project

has been published.

25

Lesson 2: Creating Custom Fields

Learning Objectives

In this lesson, you will learn how to do the following:

• Add a custom column to an Acumatica ERP database table

• Add a custom field to an Acumatica ERP data access class

• Add the control for the custom field to the form

26

Purpose

The manager of the Smart Fix Company needs to specify some stock items on Stock Items (IN202500) form as repair

item and select the corresponding type. It can be achieved by changing below:

• The Database table - create a custom database column using Customization Project Editor.

• The DAC - add a new field to accommodate the database column using Visual Studio.

• The User Interface – create a control in the screen or ASPX from the DAC field using Customization

Project Editor.

Changes to be implemented to Stock Items (IN202500) form to the Item Defaults section of General tab:

• The Repair Item check box will be used to define whether the selected stock item is a repair item.

• The Repair Item Type box will hold the repair item type to which the repair item belongs

• Battery, Screen, Screen Cover, Back Cover, or Motherboard.

• Custom Fields are added to IN.InventoryItem DAC and InventoryItem database table.

OFS International
Acumatica Customer

Acumatica Customization Platform

– An Overview

28

• Provides the ability to customize the functionality or behavior of
the form.

• Based on extension models.

• An extension for a graph (BLC) or a DAC is a class derived from
a generic class defined in PX.Data assembly of Acumatica.

• DAC Extension is derived from
PXCacheExtension<T> generic class.

• BLC/Graph Extension is derived from
PXGraphExtension<T> generic class.

• The graph/cache extensions present/published in a
customization project are applied to the base class at run time
during the first initialization of the base class.

• Supports multi-level extensions – to develop applications
distributed in multiple editions. During run-time, the system
collects list of all the extensions and load in alphabetical order.

Acumatica Customization Platform – An Overview

29

Acumatica Customization Platform – An Overview (Contd..)

public class DACExtension : PXCacheExtension<BaseDAC>

{
//Put new fields definition here

//Customize existing attributes and fields
}

public class BLCExtension : PXGraphExtension<BaseBLC>

{
//Put new event handlers, actions, data views or
methods here

//Customize existing logic with defining new one
with the same name

}

30

Step 2.1: Creating a custom column and field with the Project Editor

In this step, we will create a custom column for Repair Item checkbox to InventoryItem database table and a custom field to IN.InventoryItem

Data Access Class.

• Create a DAC extension or cache extension of IN.InventoryItem DAC to hold the custom fields.

• Open the Stock Items (IN202500) form, and then open the Screen Editor for it as follows:

1. On the form title bar, click Customization > Inspect Element – to find the details about the tab and section

2. Click the name of the General tab to open the Element Properties dialog box (provides details about the Control Type, Data access Class,

View Name and the BLC or Graph of the control and the form).

3. Click Customize.

4. In the Select Customization Project dialog box, which opens, select the PhoneRepairShop customization project, and click OK. The

Customization Project Editor opens for the PhoneRepairShop project; the Screen Editor is displayed for the Tab: ItemSettings node, which is

selected in the control tree.

• To add a custom field for the Repair Item check box in the customization project

1. On the Screen Editor page, click the Add Data Fields tab.

2. On the table toolbar, click New Field.

3. In the Create New Field dialog box, which opens, specify the following settings for the new field:

1. Field Name: RepairItem

2. Display Name: Repair Item

3. Storage Type: DBTableColumn

4. Data Type: bool

4. Click OK to create the extensions to both DAC and the database table with Ext as suffix to the IN.InventoryItem DAC.

31

Figure: Custom elements to be added to the Stock Items form

32

Figure: Customization menu

33

Figure: Element Properties dialog box

34

Step 2.1: Creating a custom column and field with the Project Editor – Continued..

• Move the data access class extension to the PhoneRepairShop_Code extension library:

1. In the navigation pane, click Data Access.

2. On the Customized Data Classes page, click the line with InventoryItem.

3. On the page toolbar, click Convert to Extension.

4. The InventoryItemExtensions Code item appears in the Code Editor.

5. On the toolbar of the Code Editor, click Move to Extension Lib.

• In Visual Studio, adjust the DAC extension as follows:

1. Move the InventoryItemExtensions.cs file to the DAC folder and open the file. Notice that Acuminator displays the PX1016 error and

the PX1011 warning for the InventoryItemExt class. We can either suppress or fix the Acuminator errors/warnings.

2. Remove virtual from the UsrRepairItem property field.

3. Make sure the UsrRepairItem field has the attributes shown in the following code.

[PXDBBool]

[PXUIField(DisplayName="Repair Item")]

[PXDefault(false, PersistingCheck = PXPersistingCheck.Nothing)]

4. Build the project.

35

Figure: Suppression of the error in a comment

Figure: Fix of the warning

36

Step 2.2: Creating a Control for the Custom Field

• Open the Screen Editor for the Stock Items (IN202500) form.

• In the control tree of the Screen Editor, click the Tab: ItemSettings node.

• On the Add Data Fields tab, select the Custom filter tab to view the custom fields that are available through the

data view of the container. Notice that the Control column displays the available control type for the custom field.

• Create the control for the custom field as follows:

• In the control tree of the Screen Editor, select the Type node to position the new control beneath it.

• On the Add Data Fields tab, select the unlabeled check box for the row with the custom field.

• On the table toolbar, click Create Controls to create the control for the selected field.

• On the menu of the Customization Project Editor, click Publish > Publish Current Project to apply the customization to the site.

• Close the Compilation window.

• Refresh the Stock Items form in the browser to view the added control on the General tab of the form.

37

Figure: The Type node in the control tree

38

Figure: The added control

39

Figure: The Repair Item check box

40

Demo

41

Step 2.3: Creating a Custom Column with the Project Editor and a Custom Field

with Visual Studio

Will define the UsrRepairItemType data field in the InventoryItemExt DAC extension and Repair Item Type

combo box as input control.

To add the column to the InventoryItem table, in the Customization Project Editor, open the PhoneRepairShop project

-> Database Scripts -> Add Column to Table. In the dialog box that opens, specify the following values and click OK:

▪ Table: InventoryItem

▪ Field Name: UsrRepairItemType

▪ Data Type: string

▪ Length: 2

In Visual Studio, in the Helper\Constants.cs file, add the RepairItemTypeConstants class – to define the

constants for repair item types.

public const string Battery = "BT";

In the Helper\Messages.cs file, define the strings for the repair item types in the Messages class.

public const string Battery = "Battery";

Add the field UsrRepairItemType – (PXDBString) to the InventoryItemExt DAC – with PXStringList

attribute utilizing the above constant strings.

Build the project.

42

Step 2.4: Creating a control for the Custom Field

• Create a control for Repair Item Type custom field from the UsrRepairItemType field added to

the InventoryItemExt DAC.

• Can be done either from the Screen Editor or from the ASPX of the page.

• For custom forms, ASPX can be found inside Pages folder of the instance. For customized version

of existing pages, ASPX can be found inside CstPublished folder of the instance. Files in

CstPublished folder are available for preview in the UI and are overridden once the package is

published.

• Make sure the type of the control is Combo box or Dropdown.

43

Figure: The Repair Item Type box

44

Changes to the DAC:

Repair Item Type box is made

unavailable by default by setting the
Enabled property of the

PXUIField attribute of

UsrRepairItemType in

InventoryItemExt DAC to

false.

Changes to the graph:

• Add the RowSelected event handler to
make the Repair Item Type field
available based on the selection of
Repair Item checkbox.

• Access UsrRepairItem by invoking
GetExtension method to
InventoryItem DAC and use
PXUIFieldAttribute.SetEnabled<

>() to change the Enabled property of
UsrRepairItemType extension field.

An event handler can be added either from
Screen Editor and navigating to the
corresponding control -> Events tab -> Add
Handler -> Keep Base Method or can be
added from Visual Studio though code in
InventoryItemMaint.cs file.

Changes to the ASPX page:

Set CommitChanges to True for

Repair Item checkbox.

If the value in a box needs to be

processed every time the user

changes this value, we need to set
the CommitChanges property of the

box to True to enable callbacks for

the box.

Step 2.5: Making the Custom Field Conditionally Available (with RowSelected)

The Repair Item Type box should be unavailable on the Stock Items (IN202500) form unless

the Repair Item check box is selected.

45

Figure: The generation of the event handler

46

Figure: The CommitChanges property

47

Demo

48

RowSelected Event:

• RowSelected occurs each time a data record is displayed in

the UI.
• When one sets the Current property of a PXCache object.

• The best place to configure the UI based on the values of data

fields.
• However, note that RowSelected is fired several times for a

record during each round trip and it is the worst place to read

data from the database.

More about Event Handlers and RowSelected event

An event handler can be implemented in a graph, as well as in an

attribute of a data field.

• Graph event handlers - defined as methods in a BLC class for

a particular DAC or a DAC field.

• Attribute event handlers - defined as methods in attribute

classes. And is attached to all DAC objects or data fields with

these attributes.

Types of Event Handlers

Classic (Obsolete):

public virtual void DAC_Field_FieldUpdated(PXCache cache,
PXFieldUpdatedEventArgs e)

{}

public virtual void DAC_RowInserting(PXCache cache,
PXRowInsertingEventArgs e)

{}

Generic (Recommended):

public virtual void _(Events.FieldUpdated<DAC, DAC.field> e)

{}

public virtual void _(Events.RowInserting<DAC> e)

{}

-ing events (e.g. FieldDefaulting, RowUpdating):

• Graph handlers first, then attribute handlers

• Graph handlers can cancel execution of attribute handlers by
setting e.Cancel= true

-ed events (e.g. FieldUpdated, RowUpdated):

• Attribute handlers first, then graph handlers

• One typically can’t cancel anything in graph

49

Step 2.6: Testing the Customized Form

UI Element (Location) First Modified Record Second Modified

Record

Third Modified Record

Inventory ID (Summary

area)

BAT3310 BAT3310EX BCOV3310

Repair Item (Item

Defaults section

of the General tab)

Selected Selected Selected

Repair Item Type (Item

Defaults

section of the General

tab)

Battery Battery Back Cover

50

Lesson Summary

In this lesson, you have learned how to create a control so that you can display on a form a

custom field bound to the database. To implement this customization, you have learned how to

add the necessary modifications to a customization project and how to publish the project to apply

the changes to the system.

As you have completed the lesson, you have added the following elements to the

PhoneRepairShop customization project:

• Two column definitions in the InventoryItem table of the database.

• Two custom field declarations in the extension of the IN.InventoryItem data access class (in the

PhoneRepairShop_Code extension library).

• Two controls to display the custom fields on the Stock Items (IN202500) form.

• One custom event handler, which you have added to the InventoryItemMaint graph. You have

used the RowSelected event handler to configure the UI presentation logic.

51

Lesson Summary

Joe Gibbs Racing
Acumatica Partner

Day 2

53

Recap of Day 1

1. Learnt about Customization projects, Extension Library, Acumatica Customization Platform and Application

Architecture.

2. Created a new Customization Project, Loaded items from a folder, Bound it to an existing extension library,

Published the Customization project to apply the changes to the instance.

3. Inspect Element properties for Stock Items screen and customized InventoryItem DAC and added
UsrRepairItem field and added the checkbox control in Stock Items form using Screen Editor.

4. Added another field UsrRepairItemType to InventoryItemExt, a custom column to InventoryItem table though

Database Scripts and created a combo box control in Stock Items form using Screen Editor.

5. Learnt about Event Handlers, Acuminator warnings and errors.

6. Added RowSelected event from Screen Editor > Events. And moved the InventoryItemMaint_Extension to the

Extension library.

7. Added Enabled property to false in PXUIField attribute of UsrRepairItemType field.

8. Modified the classic Handler to Generic Handler type. And added the condition to enable the
UsrRepairItemType only if the UsrRepairItem value is true.

54

Lesson 3: Implementing the Update and Validation of Field Values

Learning Objectives

In this lesson, you will learn how to do the following:

• Update the fields of a data record on update of a field of this record

• Validate the value of a field that does not depend on the values of other fields of the same record

55

Changes to be Implemented

• Modify the Business logic of Services and Prices (RS203000) form and Repair Work Orders (RS301000) forms.

• In Repair tab of the Services and Prices (RS203000) form – if an Inventory ID is selected, the values in Repair

Item Type and Price must be filled from Repair Item Type and Base Price from Stock Items (IN202500) form.

• In Labor tab of the Repair Work Orders (RS301000) form – the values are automatically filled from Services and

Prices (RS203000) form and the Quantity column must be validated to fulfill the below conditions:

• Must be greater than or equal to zero.

• Must be greater than or equal to the Quantity column in the Labor tab of Services and Prices form with same Inventory ID,

Service ID and Device ID.

• Show error when lesser than zero.

• Display warning and automatically change the value when lesser than the value in Labor tab of the Services and Prices form.

56

Step 3.1: Updating Fields of a Record on Update of a Field of This Record (with

FieldUpdated and FieldDefaulting)

• In Services and Prices (RS203000) form, when the RSSVRepairItem.InventoryID value is

changed, will copy the RSSVRepairItem.BasePrice and RSSVRepairItem.RepairItemType

values from the stock item record that has the ID equal to the new RSSVRepairItem.InventoryID

value.

• In RSSVRepairPriceMaint graph, we will add

• FieldUpdated event handler for RSSVRepairItem.InventoryID field to update:

• RSSVRepairItem.RepairItemType – by calling SetValueExt<field> to assign value.

• RSSVRepairItem.BasePrice – trigger FieldDefaulting event by calling SetDefaultExt<field> and assign value.

• FieldDefaulting event handler for RSSVRepairItem.BasePrice to set the base price

• RSSVRepairItem.BasePrice – find the InventoryItem and corresponding InventoryItemCurySettings to get the base

price of an inventory item and set to NewValue.

• PXSelectorAttribute.Select<>() method – to select a stock item with InventoryID from the

updated field using the BQL query from PXSelector on the specific field.

• PK.Find() method – used to select a record based on the values of the key fields and can be used

when a primary key is defined for a DAC.

• Enable callback for the control in the RS203000.aspx by setting CommitChanges property to True for

the InventoryID control of Repair Items tab.

57

Introduction to BQL

• Is a part of Acumatica DataAccess Layer

• Is mapped to SQL queries

• Hides the underlying database engine

• Is checked at compile time

• Comes with a variety of clauses allowing to express most DB

queries

• Where<>

• InnerJoin<>.On<>

• OrderBy<>

• GroupBy<>

• SelectFrom<>.View

• SelectFrom<>.OrderBy<>.View

• SelectFrom<>.[Joins].View

• SelectFrom<>.[Joins].AggregateTo<>.V

iew.ReadOnly

• SelectFrom<>.Where<>.OrderBy<>.View.

ReadOnly

Passing Parameters from the code – Required:

foreach(Product record in SelectFrom<Product>
Where<Product.isActive.IsEqual<@P.AsBool>>
.View.Select(this, true));

Parameter value from context - Current:

Product record = SelectFrom<Product>.
Where<Product.productid

.IsEqual<Tran.productid.FromCurrent>>

.View.Select(this);

Optional value in a query:

public SelectFrom<Document>.
Where<Document.docType.IsEqual<Document.doctype
.AsOptional>>.View Receipts;

BQL – Querying Data

Some Common BQL Clauses

58

Comparison of Fluent BQL, Traditional BQL, and LINQ

59

Step 3.2: Validating an Independent Field Value (with FieldVerifying)

In Repair Work Orders (RS301000) form, in the associated graph - RSSVWorkOrderEntry,

FieldVerifying event is added to validate the Quantity as below:

• When RSSVWorkOrderLabor.Quantity < 0, throw an exception using

PXSetPropertyException and cancel the assignment of the new value

• When RSSVWorkOrderLabor.Quantity > 0 but smaller than RSSVLabor.Quantity value

(set from Services and Prices form), attach the exception as warning to

RSSVWorkOrderLabor.Quantity field using RaiseExceptionHandling<> which will

prevent the saving of the record.

• Retrieve the default labor item related to the work order labor using Fluent BQL statement –

SelectFrom<RSSVLabor> using RSSVWorkOrder.ServiceID,

RSSVWorkOrder.DeviceID and RSSVWorkOrderLabor.InventoryID.

In the Screen Editor or ASPX code, set CommitChanges is set to True for the Quantity field in the

grid of Labor tab of Repair Work Orders (RS301000) form.

60

Figure: The error for a negative value

61

Figure: The warning message

62

Demo

63

Lesson Summary

In this lesson, you have defined the business logic scenarios on the Repair Items tab of the

Services and Prices (RS203000) form and on the Labor tab of the Repair Work Orders

(RS301000) form.

You have used the FieldUpdated and FieldDefaulting event handlers to modify the values of a

detail record on update of the Inventory ID column of this detail record. In the FieldUpdated event

handler, you have used the PXSelectorAttribute.Select<>() method to obtain the stock item record

with the inventory ID selected in the updated field.

To verify the value of a field that does not depend on other fields of the same record, you have

used the FieldVerifying event handler. In this event handler, you have thrown an exception by

using PXSetPropertyException to display an error and cancel the assignment of the new value. To

display a warning, you have attached the exception to the field by using the

RaiseExceptionHandling method.

64

Lesson Summary

65

Lesson 4: Creating an Acumatica ERP Entity Corresponding to a Custom Entity

Learning Objectives

In this lesson, you will learn how to implement an asynchronous operation by using the

PXLongOperation class.

66

Step 4.1: Performing Preliminary Steps

1. In Enable/Disable Features (CS10000) form, enable/check the Advanced SO Invoices feature – to enable the

addition of a stock item directly to an SO Invoice without processing sales orders and shipments.

2. On the Item Classes (IN201000) form, in the Item Class Tree, select STOCKITEM.

3. On the General tab (General Settings section), select the Allow Negative Quantity check box.

4. On the form toolbar, click Save.

67

Figure: Item Classes form

68

Step 4.2: Defining the Logic of Creating an SO Invoice

In RSSVWorkOrderEntry graph, will add the CreateInvoice static method to create SO Invoice for the current

work order.

1. Define a PXTransactionScope – to save data from multiple graphs and avoid incomplete data being saved in case of any

errors.

2. Create an instance of SOInvoiceEntry graph using PXGraph.CreateInstance<SOInvoiceEntry>() and

initialize the summary (Document view of SOInvoiceEntry) of the Invoice.

3. Create an instance of RSSVWorkOrderEntry graph and assign the workOrder to Current Workorder.

4. Add the lines (Transactions view) associated with the repair items from the Repair Items tab (RepairItems view).

5. Add the lines (Transactions view) associated with labor from the Labor tab (Labor view).

6. Save the invoice to the database by calling Actions.PressSave() or Actions.Save.Press().

7. Assign the generated invoice number and save the changes.

8. Complete/Close the PXTransactionScope.

69

Step 4.3: Defining the Create Invoice Action

1. In the RSSVWorkOrderEntry graph, will define the CreateInvoiceAction action, which adds the Create

Invoice command to the More menu (under Other), adds the button with the same name on the form toolbar using
PXAction<RSSVWorkOrder> CreateInvoiceAction.

2. Inside the action, populate a local list variable to contain the list of all workorders (RSSVWorkOrder).

3. Trigger the Save action to save changes to the database by calling Actions.PressSave().

4. Get the Current WorkOrder and pass it as a parameter to CreateInvoice method.

5. Surround the invocation to CreateInvoice by PXLongOperation.StartOperation() to create an invoice

for the current workorder asynchronously in a separate thread to process the long running operations.

70

Step 4.4: Defining the Visibility and Availability of the Create Invoice Action

For a repair work order, a user should be able to create an invoice only after the work order has been completed i.e.,

Create Invoice button should be visible only for work order with Completed status. And only one invoice can be created

for a work order i.e., after the successful creation of the invoice, the button and command should be disabled.

In RSSVWorkOrderEntry graph, add RowSelected<RSSVWorkOrder> event is added.

Inside the RowSelected event,

1. Will make the CreateInvoiceAction visible only when the Current WorkOrder Status is Completed – by calling

SetVisible() method.

2. Will make the CreateInvoiceAction enabled only when the Current WorkOrder Status is Completed and InvoiceNbr

is empty (i.e., no invoice has been generated yet) – by calling SetEnabled() method.

71

Step 4.5: Testing the Create Invoice Action

1. Open Repair Work Orders (RS301000) form.

2. Open 000001 repair work order.

3. On the form toolbar, click Remove Hold – to change status from Hold to Ready for Assignment.

4. On the form toolbar, click Assign – to change the status to Assigned.

5. On the form toolbar, click Complete – to change the status to Completed.

6. Now, notice that Create Invoice button/action is visible, click Create Invoice.

7. Notice that the Invoice Nbr. box is having the value of the newly created SO Invoice.

72

Figure: Creation of an SO invoice

73

Figure: Update of the Invoice Nbr box

74

Demo

75

Lesson Summary

In this lesson, you have learned how to initiate an asynchronous operation inside an action

method by using the PXLongOperation class. Also, you have implemented the creation of an SO

invoice based on a repair work order by doing the following in the RSSVWorkOrderEntry graph:

• Defining the static CreateInvoice method, which creates an instance of the SOInvoiceEntry graph

• Defining the Create Invoice button on the form toolbar and the command with the same name on

the More menu; the underlying action initiates the asynchronous execution of the CreateInvoice

method by using the PXLongOperation class

• Specifying the availability of the Create Invoice action in the RowSelected event handler so that

only a single invoice can be created for a repair work order

76

Lesson Summary

77

Lesson 5: Deriving the Value of a Custom Field from Another Entity

Learning Objectives

In this lesson, you will learn how to do derive the value for a custom field from another form.

78

Step 5.1: Adding a Custom Field to the Payments and Applications Form

1. In Payments and Applications (AR302000) form, add a Prepayment Percent box to the form.

2. Add a column UsrPrepaymentPercent to ARPayment table with same parameters as PrepaymentPercent

field in RSSVSetup table and the datatype is set to decimal(9,6).

3. Create an extension for ARPayment or ARRegister DAC and add UsrPrepaymentPercent field.

4. In the Screen Editor, create checkbox control for UsrPrepaymentPercent in the Summary area of Payments

and Applications form.

5. Correct the width for the Prepayment Percent label. To do this, in the Column element that is the parent to the

Prepayment Percent element, for the LabelsWidth property, specify the M value.

6. Publish the customization project.

79

Figure: Prepayment Percent element

80

Step 5.2: Deriving the Default Value of the PrepaymentPercent Field

To populate the UsrPrepaymentPercent field of the ARPayment extension when a payment is created, we

can use either of the below:

1. FieldDefaulting event

2. PXDefault attribute

FieldDefaulting event:

1. Create an extension of ARPaymentEntry graph and add FieldDefaulting event for

UsrPrepaymentPercent field of ARPayment extension.

2. Return the PrepaymentPercent value from RSSVSetup record selected using BQL as NewValue after

checking for null to avoid NullReferenceException.

PXDefault attribute:

1. Add PXDefault attribute with the type from RSSVSetup field and SourceField is set as

RSSVSetup.prepaymentPercent field to UsrPrepaymentPercent field in ARPayment DAC

extension.

81

Step 5.3: Testing the Deriving of the Field Value

1. On the Invoices (SO303000) form, open the INV000049 invoice (created during previous steps).

2. Release the invoice by typing 40 in the Amount box of the Summary area -> Remove Hold -> Release.

3. From More menu (Processing) -> Pay to open Payments and Applications (AR302000) form and in the

Summary area, notice the Prepayment Percent box has a value of 10 from Repair Work Order Preferences

(RS101000) form.

4. Save the payment.

82

Figure: The Prepayment Percent box

83

Lesson Summary

In this lesson, you created a custom field on the Payments and Applications (AR302000) form and

learned how to assign its default value, which is derived from another entity. To assign a default

value for a custom entity, you have done the following:

1. Defined the extension of a graph in which the field is initialized

2. In the graph extension, defined the FieldDefaulting event handler for the custom field

84

Lesson Summary

85

Lesson 6: Debugging Customization Code

Learning Objectives

In this lesson, you will learn how to debug the source code of Acumatica ERP.

86

Useful Development Environment Optimization

Web.config:

▪ Enable Debug Web Site - <compilation debug="True" … />

▪ Optimize Compilation - <compilation OptimizeCompilations="True" … />

▪ Show Automations - <add key="AutomationDebug" value="True" />

▪ Ignore Scheduler - <add key="DisableScheduleProcessor" value="True" />

▪ Optimize Start-up - <add key="InstantiateAllCaches" value="False" />

▪ Optimize Start-up - <add key="CompilePages" value="False" />

▪ EnableAuto Validation - <add key="PageValidation" value="True" />

When the environment

is slow

To Debug

87

Useful Development Environment Optimization

“Acuminator” Extension

Static code analysis, colorizer and

suggestions tool for Acumatica

Framework

“Attach To” Extension

▪ Attach Debugger to Acumatica

with 1-click

88

Step 6.1: Debugging the Acumatica ERP Source Code

1. Make sure the Acumatica program database (PDB) files are in the Bin folder of the Acumatica ERP instance folder

that you use for the training course (for example, in PhoneRepairShop\Bin). PDB files are copied when Install

Debugger Tools option is checked during installation from Acumatica Configuration Wizard. A PDB file contains

the link between compiler instructions and some lines in source code.

2. Configure the web.config file, in <system.web> tag and set <compilation debug="True" ...> and

Save.

3. In Visual Studio, open the PhoneRepairShop_Code solution, which includes both the PhoneRepairShop_Code

project and the PhoneRepairShop website.

4. In the Visual Studio’s main menu, select Tools > Options > Debugging > General > Enable Just My Code.

5. In the Debugging > Symbols section, in the Symbols file (.pdb) locations list, add the path to the location of the

PDB files of the instance and click OK.

89

Figure: Clearing the Enable Just My Code check box

90

Step 6.1: Debugging the Acumatica ERP Source Code (Contd..)

1. In Visual Studio, open the Acumatica ERP source code files. For the PhoneRepairShop instance, all files are in

the PhoneRepairShop/App_Data/CodeRepository folder.

2. In the Solution Explorer, select PhoneRepairShop > App_Data > CodeRepository > PX.Objects > AR >
ARPaymentEntry.cs, and go to the definition of the IEnumerable Release(PXAdapter adapter) method.

3. Add a breakpoint inside the Release method.

4. Attach the Visual Studio debugger to the w3wp.exe process.

5. Start debugging by navigating to Payments and Applications form, creating a payment and clicking Release
button – in turn invoking the Release method.

91

Figure: Viewing the source code of the Release action

92

Lesson Summary

In this lesson, you have learned how to debug the code of Acumatica ERP by using program

database (PDB) files.

Thank you!

Vidhyalakshmi Hariharasubramanian

	Slide 1: T190 Quick Start in Customization
	Slide 2: Timing and Agenda
	Slide 3
	Slide 4
	Slide 5: Introduction – Customization Project
	Slide 6: Introduction - Customization Projects
	Slide 7: Introduction – Application Architecture
	Slide 8: Querying of the Data
	Slide 9
	Slide 10: Company Story - Smart Fix company
	Slide 11: Lesson 1: Creating a Customization Project
	Slide 12: Step 1.1 and 1.2: Creating a Customization Project and Loading Items to the Customization Project
	Slide 13: Figure: Items of the customization project
	Slide 14: Demo
	Slide 15
	Slide 16: Introduction - Extension Libraries
	Slide 17: More about Extension Libraries
	Slide 18: Step 1.3 : Binding the Extension Library
	Slide 19: Step 1.4: Publishing the Customization Project
	Slide 20: Step 1.5: Reviewing the changes in Acumatica ERP
	Slide 21: Figure: The Phone Repair Shop workspace
	Slide 22: Figure: The Repair Services custom form
	Slide 23: Demo
	Slide 24: Lesson Summary
	Slide 25: Lesson 2: Creating Custom Fields
	Slide 26: Purpose
	Slide 27
	Slide 28: Acumatica Customization Platform – An Overview
	Slide 29: Acumatica Customization Platform – An Overview (Contd..)
	Slide 30: Step 2.1: Creating a custom column and field with the Project Editor
	Slide 31: Figure: Custom elements to be added to the Stock Items form
	Slide 32: Figure: Customization menu
	Slide 33: Figure: Element Properties dialog box
	Slide 34: Step 2.1: Creating a custom column and field with the Project Editor – Continued..
	Slide 35: Figure: Suppression of the error in a comment
	Slide 36: Step 2.2: Creating a Control for the Custom Field
	Slide 37: Figure: The Type node in the control tree
	Slide 38: Figure: The added control
	Slide 39: Figure: The Repair Item check box
	Slide 40: Demo
	Slide 41: Step 2.3: Creating a Custom Column with the Project Editor and a Custom Field with Visual Studio
	Slide 42: Step 2.4: Creating a control for the Custom Field
	Slide 43: Figure: The Repair Item Type box
	Slide 44: Step 2.5: Making the Custom Field Conditionally Available (with RowSelected)
	Slide 45: Figure: The generation of the event handler
	Slide 46: Figure: The CommitChanges property
	Slide 47: Demo
	Slide 48: More about Event Handlers and RowSelected event
	Slide 49: Step 2.6: Testing the Customized Form
	Slide 50: Lesson Summary
	Slide 51: Lesson Summary
	Slide 52
	Slide 53: Recap of Day 1
	Slide 54: Lesson 3: Implementing the Update and Validation of Field Values
	Slide 55: Changes to be Implemented
	Slide 56: Step 3.1: Updating Fields of a Record on Update of a Field of This Record (with FieldUpdated and FieldDefaulting)
	Slide 57: Introduction to BQL
	Slide 58: Comparison of Fluent BQL, Traditional BQL, and LINQ
	Slide 59: Step 3.2: Validating an Independent Field Value (with FieldVerifying)
	Slide 60: Figure: The error for a negative value
	Slide 61: Figure: The warning message
	Slide 62: Demo
	Slide 63: Lesson Summary
	Slide 64: Lesson Summary
	Slide 65: Lesson 4: Creating an Acumatica ERP Entity Corresponding to a Custom Entity
	Slide 66: Step 4.1: Performing Preliminary Steps
	Slide 67: Figure: Item Classes form
	Slide 68: Step 4.2: Defining the Logic of Creating an SO Invoice
	Slide 69: Step 4.3: Defining the Create Invoice Action
	Slide 70: Step 4.4: Defining the Visibility and Availability of the Create Invoice Action
	Slide 71: Step 4.5: Testing the Create Invoice Action
	Slide 72: Figure: Creation of an SO invoice
	Slide 73: Figure: Update of the Invoice Nbr box
	Slide 74: Demo
	Slide 75: Lesson Summary
	Slide 76: Lesson Summary
	Slide 77: Lesson 5: Deriving the Value of a Custom Field from Another Entity
	Slide 78: Step 5.1: Adding a Custom Field to the Payments and Applications Form
	Slide 79: Figure: Prepayment Percent element
	Slide 80: Step 5.2: Deriving the Default Value of the PrepaymentPercent Field
	Slide 81: Step 5.3: Testing the Deriving of the Field Value
	Slide 82: Figure: The Prepayment Percent box
	Slide 83: Lesson Summary
	Slide 84: Lesson Summary
	Slide 85: Lesson 6: Debugging Customization Code
	Slide 86: Useful Development Environment Optimization
	Slide 87: Useful Development Environment Optimization
	Slide 88: Step 6.1: Debugging the Acumatica ERP Source Code
	Slide 89: Figure: Clearing the Enable Just My Code check box
	Slide 90: Step 6.1: Debugging the Acumatica ERP Source Code (Contd..)
	Slide 91: Figure: Viewing the source code of the Release action
	Slide 92: Lesson Summary
	Slide 93

